LogoLogo

Février, Maxime. Liberté infinitésimale et modèles matriciels déformés

Février, Maxime (2010). Liberté infinitésimale et modèles matriciels déformés.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
1652Kb

Résumé en francais

Le travail effectué dans cette thèse concerne les domaines de la théorie des matrices aléatoires et des probabilités libres, dont on connaît les riches connexions depuis le début des années 90. Les résultats s'organisent principalement en deux parties : la première porte sur la liberté infinitésimale, la seconde sur les matrices aléatoires déformées. Plus précisément, on jette les bases d'une théorie combinatoire de la liberté infinitésimale, au premier ordre d'abord, telle que récemment introduite par Belinschi et Shlyakhtenko, puis aux ordres supérieurs. On en donne un cadre simple et général, et on introduit des fonctionnelles de cumulants non-croisés, caractérisant la liberté infinitésimale. L'accent est mis sur la combinatoire et les idées d'essence différentielle qui sous-tendent cette notion. La seconde partie poursuit l'étude des déformations de modèles matriciels, qui a été ces dernières années un champ de recherche très actif. Les résultats présentés sont originaux en ce qu'ils concernent des perturbations déterministes Hermitiennes de rang non nécessairement fini de matrices de Wigner et de Wishart. En outre, un apport de ce travail est la mise en lumière du lien entre la convergence des valeurs propres de ces modèles et les probabilités libres, plus particulièrement le phénomène de subordination pour la convolution libre. Ce lien donne une illustration de la puissance des idées des probabilités libres dans les problèmes de matrices aléatoires.

Sous la direction du :
Directeur de thèse
Février, Maxime
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Mathématiques de Toulouse (IMT), UMR 5219
Mots-clés libres :Probabilités - Matrices aléatoires - Probabilités libres - Probabilités libres de type B - Liberté infinitésimale - Cumulants non-croisés infinitésimaux - Système dual de dérivation - Subordination - Modèle matriciel déformé - Plus grande valeur propre - Valeur propre extrêmale - Matrice de Wigner - Matrice de covariance empirique
Sujets :Mathématiques
Déposé le :14 Nov 2011 16:54