LogoLogo

Gaertig-Stahl, Alice. Modèles probabilistes de feux de forêt sur des graphes infinis

Gaertig-Stahl, Alice (2012). Modèles probabilistes de feux de forêt sur des graphes infinis.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
1426Kb

Résumé en francais

Cette thèse concerne l'étude de modèles de feux de forêt d'un point de vue probabiliste. Les modèles que nous avons étudiés ont été introduits dans le cadre de l'étude des systèmes critiques auto-organisés à la fin des années 80. Il s'agit de systèmes de particules, les arbres, définis sur un graphe connecté. Leur évolution est régie par deux familles de processus de Poisson, l'une pour la croissance des arbres, l'autre pour leur disparition via l'action de la foudre. L'influence de la foudre est caractérisée par un paramètre lambda > 0. Ces modèles ont été beaucoup étudiés sur Z. Par contre sur des graphes infinis plus généraux, seules son existence et son unicité ont été montrées jusqu'à présent. Dans cette thèse, nous avons étudié ces modèles sur Zd pour d > 2 et sur les arbres binaires, dans deux directions. La première concerne l'existence de mesures invariantes. La deuxième concerne l'étude de ce modèle lorsque le paramètre lambda tend vers 0. Dans la première partie, nous montrerons que pour tous les paramètres lambda > 0, les processus de feux de forêt sur Zd pour d > 2 possèdent au moins une mesure invariante. Les processus de feux de forêt sont des processus de Markov non Feller, donc on ne peut pas appliquer les théorèmes usuels de l'étude des systèmes de particules. De plus, la géométrie de Zd ne permet pas d'utiliser les mêmes arguments que dans le cas de Z. Nous utiliserons des outils développés lors de l'étude de ces modèles sur Zd. Dans une seconde partie, nous nous consacrerons à la problématique de l'existence d'un processus limite lorsque lambda tend vers 0, sur les arbres binaires. Dans un premier temps, nous étudierons un modèle sans feux pour mieux comprendre comment grossissent les composantes connexes d'arbres. En se plaçant dans une nouvelle échelle de temps et d'espace, nous montrerons la convergence en loi de la taille d'un ensemble de sites construit à partir d'une boule de rayon n et des composantes connexes qui l'intersectent, au bout d'un temps t(n) > 0. Dans un deuxième temps, nous rajouterons l'action de feux, en définissant un modèle différent du modèle initial. Dans ce modèle modifié, les composantes connexes autres que celle de l'origine suivront une loi stationnaire à laquelle on s'attend à la limite, et non la dynamique du modèle de feux de forêt initial. Pour ce modèle, nous montrerons la convergence en loi de la taille renormalisée de la composante connexe de l'origine au moment où elle brûle pour la première fois.

Sous la direction du :
Directeur de thèse
Bressaud, Xavier
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Mathématiques de Toulouse (IMT), UMR 5219
Mots-clés libres :Probabilités - Processus de feux de forêt - Systèmes de particules
Sujets :Mathématiques
Déposé le :03 Jun 2013 09:09