LogoLogo

Bouyssier, Julien. Transports couplés en géométries complexes

Bouyssier, Julien (2012). Transports couplés en géométries complexes.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
2921Kb

Résumé en francais

Ces travaux s'intéressent aux questions de transports non stationnaires et de transferts stationnaires de chaleur et de masse par convection-diffusion au sein de géométries complexes. Par complexe, nous entendons d'une part pour le transport que le fluide est convecté au sein d'une cavité de section quelconque lentement variable dans la direction longitudinale, c'est à dire ayant des variations longitudinales grandes devant hauteur et largeur moyennes. Nous considérons d'autre part le transfert au sein de domaines non-axisymétriques dans lesquels sont plongés un ou plusieurs tubes où le fluide porteur s'écoule. Pour ce qui concerne le transfert, ce travail a consisté à montrer comment étendre le principe, valider l'utilisation, et illustrer l'efficacité d'une décomposition en mode de Graetz pour la prédiction des échanges dans des configurations réalistes d'échangeurs. Cette décomposition permet de formuler le problème initial 3D comme un problème aux valeurs propres généralisées en 2D dont la résolution numérique est drastiquement moins coûteuse. Nous généralisons la notion de mode de Graetz à des conditions aux limites latérales quelconques et, en particulier pour le cas d'échangeurs équilibrés où nous avons mis en évidence un nouveau mode linéairement variables dans la direction longitudinale. Nous mettons en oeuvre le calcul de ces modes de Graetz dans le cas de configurations semi-infinies pour traiter, par exemple, des configurations transversalement périodiques (types plancher chauffant) et montrons qu'un faible nombre de modes suffit pour donner une très bonne approximation des transferts. Dans le cas d'échangeurs finis couplé avec des tubes en entrée/sortie, nous montrons comment déterminer les amplitudes des modes de Graetz dans les différents domaines par la minimisation d'une fonctionnelle associée aux conditions d'entrée sorties retenues. Ces modes permettent l'étude paramétrique systématique des champs de température, des flux de chaleurs entre les domaines fluides et solides ainsi que des rendements thermiques d'un échangeur à deux tubes. Nos résultats indiquent que la longueur d'échange caractéristique est gouvernée par le premier mode de Graetz généralisé à grand nombre de Péclet. Nous montrons aussi, en particulier, qu'un échangeur symétrique possède un spectre symétrique, et une évolution amont/aval symétrique. Dans le cas de la dispersion de Taylor, nous avons établi une forme conservative 3D des équations de dispersion de Taylor en géométrie variable généralisant le cas 2D déjà connu. Nous avons ensuite implémenté en éléments finis puis validé numériquement ces équations de dispersion en 2D et 3D. Nous montrons que les variations longitudinales 3D de la cavité peuvent considérablement augmenter la dispersion longitudinale.

Sous la direction du :
Directeur de thèse
Plouraboué, Franck
Pierre, Charles
Ecole doctorale:Mécanique, énergétique, génie civil, procédés (MEGeP)
laboratoire/Unité de recherche :Institut de Mécanique des Fluides de Toulouse (IMFT), UMR 5502
Mots-clés libres :Transfert de chaleur - Convection diffusion - Formulation variationnelle - Echangeurs convectifs - Décomposition en modes de Graetz - Problème aux valeurs propres généralisées
Sujets :Physique
Déposé le :08 Jul 2013 11:25