LogoLogo

Borgetto, Damien. Allocation et réallocation de services pour les économies d'énergie dans les clusters et les clouds

Borgetto, Damien (2013). Allocation et réallocation de services pour les économies d'énergie dans les clusters et les clouds.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
2423Kb

Résumé en francais

L'informatique dans les nuages (cloud computing) est devenu durant les dernières années un paradigme dominant dans le paysage informatique. Son principe est de fournir des services décentralisés à la demande. La demande croissante pour ce type de service amène les fournisseurs de clouds à augmenter la taille de leurs infrastructures à tel point que les consommations d'énergie ainsi que les coûts associés deviennent très importants. Chaque fournisseur de service cloud doit répondre à des demandes différentes. C'est pourquoi au cours de cette thèse, nous nous sommes intéressés à la gestion des ressources efficace en énergie dans les clouds. Nous avons tout d'abord modélisé et étudié le problème de l'allocation de ressources initiale en fonction des services, en calculant des solutions approchées via des heuristiques, puis en les comparant à la solution optimale. Nous avons ensuite étendu notre modèle de ressources pour nous permettre d'avoir une solution plus globale, en y intégrant de l'hétérogénéité entre les machines et des infrastructures de refroidissement. Nous avons enfin validé notre modèle par simulation. Les services doivent faire face à différentes phases de charge, ainsi qu'à des pics d'utilisation. C'est pourquoi, nous avons étendu le modèle d'allocation de ressources pour y intégrer la dynamicité des requêtes et de l'utilisation des ressources. Nous avons mis en œuvre une infrastructure de cloud simulée, visant à contrôler l'exécution des différents services ainsi que le placement de ceux-ci. Ainsi notre approche permet de réduire la consommation d'énergie globale de l'infrastructure, ainsi que de limiter autant que possible les dégradations de performance.

Sous la direction du :
Directeur de thèse
Pierson, Jean-Marc
Da Costa, Georges
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Recherche en Informatique de Toulouse (IRIT), UMR 5505
Mots-clés libres :Allocation de ressources - Optimisation - Efficacité énergétique - Informatique en nuage - Virtualisation - Programmation linéaire
Sujets :Informatique
Déposé le :11 Feb 2014 10:52