LogoLogo

Cadilhac, Anaïs. Preference extraction and reasoning in negotiation dialogues

Cadilhac, Anaïs (2013). Preference extraction and reasoning in negotiation dialogues.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
2229Kb

Résumé en francais

Modéliser les préférences des utilisateurs est incontournable dans de nombreux problèmes de la vie courante, que ce soit pour la prise de décision individuelle ou collective ou le raisonnement stratégique par exemple. Cependant, il n'est pas facile de travailler avec les préférences. Comme les agents ne connaissent pas complètement leurs préférences à l'avance, nous avons seulement deux moyens de les déterminer pour pouvoir raisonner ensuite : nous pouvons les inférer soit de ce que les agents disent, soit de leurs actions non-linguistiques. Plusieurs méthodes ont été proposées en Intelligence Artificielle pour apprendre les préférences à partir d'actions non-linguistiques mais à notre connaissance très peu de travaux ont étudié comment éliciter efficacement les préférences verbalisées par les utilisateurs grâce à des méthodes de Traitement Automatique des Langues (TAL).Dans ce travail, nous proposons une nouvelle approche pour extraire et raisonner sur les préférences exprimées dans des dialogues de négociation. Après avoir extrait les préférences de chaque tour de dialogue, nous utilisons la structure discursive pour suivre leur évolution au fur et à mesure de la conversation. Nous utilisons les CP-nets, un modèle de représentation des préférences, pour formaliser et raisonner sur ces préférences extraites. Cette méthode est d'abord évaluée sur différents corpus de négociation pour lesquels les résultats montrent que la méthode est prometteuse. Nous l'appliquons ensuite dans sa globalité avec des raisonnements issus de la Théorie des Jeux pour prédire les échanges effectués, ou non, dans le jeu de marchandage Les Colons de Catane. Les résultats obtenus montrent des prédictions significativement meilleures que celles de quatre baselines qui ne gèrent pas correctement le raisonnement stratégique. Cette thèse présente donc une nouvelle approche à la croisée de plusieurs domaines : le Traitement Automatique des Langues (pour l'extraction automatique des préférences et le raisonnement sur leur verbalisation), l'Intelligence Artificielle (pour la modélisation et le raisonnement sur les préférences extraites) et la Théorie des Jeux (pour la prédiction des actions stratégiques dans un jeu de marchandage)

Sous la direction du :
Directeur de thèse
Asher, Nicholas
Benamara, Farah
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Recherche en Informatique de Toulouse (IRIT), UMR 5505
Mots-clés libres :Préférences - Dialogues - CP-nets - Structure discursive - Traitement Automatique des Langues (TAL)
Sujets :Informatique
Déposé le :28 Apr 2014 11:29