LogoLogo

Hardy, Adrien. Problèmes d'équilibre vectoriels et grandes déviations

Hardy, Adrien (2013). Problèmes d'équilibre vectoriels et grandes déviations.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
1322Kb

Résumé en francais

Dans cette thèse on s'intéresse à la convergence et aux grandes déviations de la mesure empirique associée à certains processus ponctuels déterminantaux. Le point commun entre ces processus ponctuels est que leur polynôme caractéristique moyen est un polynôme orthogonal multiple, une généralisation des polynômes orthogonaux usuels. L'exemple le plus simple est fourni par un gaz de Coulomb bidimensionnel dans un potentiel confinant à température inverse bêta = 2; son polynôme caractéristique moyen est alors un polynôme orthogonal. Il a été prouvé, même dans le cas plus général où bêta > 0, que la mesure empirique satisfait à un principe de grande déviation, avec une fonction de taux qui fait intervenir un problème d'équilibre bien connu en théorie logarithmique du potentiel. En guise d'échauffement, nous allons montrer que ce résultat s'étend au cas d'un potentiel faiblement confinant, c'est-à-dire satisfaisant une condition de croissance plus faible que d'habitude. Pour ce faire, nous utilisons un argument de compactification qui sera d'importance pour la suite. Anticipant la description asymptotique de processus déterminantaux plus complexes, nous développons alors un cadre adéquat pour définir rigoureusement des problèmes d'équilibre vectoriels avec des potentiels faiblement confinants. Nous prouvons l'existence et l'unicité de leurs solutions, un résultat nouveau en théorie du potentiel, et aussi que les fonctionnelles associées ont des ensembles de niveau compacts. Après, nous nous intéressons à un processus ponctuel déterminantal associé à une perturbation additive d'une matrice de Wishart, pour lequel le polynôme caractéristique moyen est un polynôme orthogonal multiple à deux poids. Nous établissons un principe de grande déviation pour la mesure empirique avec une fonction de taux qui fait intervenir un problème d'équilibre vectoriel ayant des potentiels faiblement confinants. C'est la première fois qu'un problème d'équilibre vectoriel intervient dans la description des grandes déviations de matrices aléatoires. Finalement, on étudie de façon générale quand est-ce que la mesure empirique associée à un processus ponctuel déterminantal et la distribution des zéros du polynôme caractéristique moyen associé convergent vers la même limite. Nous obtenons une condition suffisante pour une classe de processus ponctuels déterminantaux qui contient les processus liés aux polynômes orthogonaux multiples. En chemin, nous donnons aussi une condition suffisante pour améliorer la convergence en moyenne de la mesure empirique en une convergence presque sûre. Comme application, on décrit les distributions asymptotiques des zéros des polynômes de Hermite multiple et de Laguerre multiple en termes de convolutions libres de distributions classiques avec des mesures discrètes, et puis nous dérivons des équations algébriques pour leur transformée de Cauchy- Stieltjes.

Sous la direction du :
Directeur de thèse
Kuijlaars, Arnoldus
Ledoux, Michel
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Mathématiques de Toulouse (IMT), UMR 5219
Mots-clés libres :Grandes déviations - Polynômes orthogonaux - Matrices aléatoires - Théorie du potentiel - Processus ponctuels déterminantaux - Polynôme caractéristique moyen - Problèmes d'équilibre
Sujets :Mathématiques
Déposé le :02 Jun 2014 14:21