LogoLogo

Ben Jabeur, Lamjed. Leveraging social relevance : using social networks to enhance literature access and microblog search

Ben Jabeur, Lamjed (2013). Leveraging social relevance : using social networks to enhance literature access and microblog search.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
1108Kb

Résumé en francais

L'objectif principal d'un système de recherche d'information est de sélectionner les documents pertinents qui répondent au besoin en information exprimé par l'utilisateur à travers une requête. Depuis les années 1970-1980, divers modèles théoriques ont été proposés dans ce sens pour représenter les documents et les requêtes d'une part et les apparier d'autre part, indépendamment de tout utilisateur. Plus récemment, l'arrivée du Web 2.0 ou le Web social a remis en cause l'efficacité de ces modèles du fait qu'ils ignorent l'environnement dans lequel l'information se situe. En effet, l'utilisateur n'est plus un simple consommateur de l'information mais il participe également à sa production. Pour accélérer la production de l'information et améliorer la qualité de son travail, l'utilisateur échange de l'information avec son voisinage social dont il partage les mêmes centres d'intérêt. Il préfère généralement obtenir l'information d'un contact direct plutôt qu'à partir d'une source anonyme. Ainsi, l'utilisateur, influencé par son environnement socio-cultuel, donne autant d'importance à la proximité sociale de la ressource d'information autant qu'à la similarité des documents à sa requête. Dans le but de répondre à ces nouvelles attentes, la recherche d'information s'oriente vers l'implication de l'utilisateur et de sa composante sociale dans le processus de la recherche. Ainsi, le nouvel enjeu de la recherche d'information est de modéliser la pertinence compte tenu de la position sociale et de l'influence de sa communauté. Le second enjeu est d'apprendre à produire un ordre de pertinence qui traduise le mieux possible l'importance et l'autorité sociale. C'est dans ce cadre précis, que s'inscrit notre travail. Notre objectif est d'estimer une pertinence sociale en intégrant d'une part les caractéristiques sociales des ressources et d'autre part les mesures de pertinence basées sur les principes de la recherche d'information classique. Nous proposons dans cette thèse d'intégrer le réseau social d'information dans le processus de recherche d'information afin d'utiliser les relations sociales entre les acteurs sociaux comme une source d'évidence pour mesurer la pertinence d'un document en réponse à une requête. Deux modèles de recherche d'information sociale ont été proposés à des cadres applicatifs différents : la recherche d'information bibliographique et la recherche d'information dans les microblogs. Les importantes contributions de chaque modèle sont détaillées dans la suite. Un modèle social pour la recherche d'information bibliographique. Nous avons proposé un modèle générique de la recherche d'information sociale, déployé particulièrement pour l'accès aux ressources bibliographiques. Ce modèle représente les publications scientifiques au sein d'réseau social et évalue leur importance selon la position des auteurs dans le réseau. Comparativement aux approches précédentes, ce modèle intègre des nouvelles entités sociales représentées par les annotateurs et les annotations sociales. En plus des liens de coauteur, ce modèle exploite deux autres types de relations sociales : la citation et l'annotation sociale. Enfin, nous proposons de pondérer ces relations en tenant compte de la position des auteurs dans le réseau social et de leurs mutuelles collaborations. Un modèle social pour la recherche d'information dans les microblogs.} Nous avons proposé un modèle pour la recherche de tweets qui évalue la qualité des tweets selon deux contextes: le contexte social et le contexte temporel. Considérant cela, la qualité d'un tweet est estimé par l'importance sociale du blogueur correspondant. L'importance du blogueur est calculée par l'application de l'algorithme PageRank sur le réseau d'influence sociale. Dans ce même objectif, la qualité d'un tweet est évaluée selon sa date de publication. Les tweets soumis dans les périodes d'activité d'un terme de la requête sont alors caractérisés par une plus grande importance. Enfin, nous proposons d'intégrer l'importance sociale du blogueur et la magnitude temporelle avec les autres facteurs de pertinence en utilisant un modèle Bayésien.

Sous la direction du :
Directeur de thèse
Tamine, Lynda
Boughanem, Mohand
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Recherche en Informatique de Toulouse (IRIT), UMR 5505
Mots-clés libres :Recherche d'information - Réseaux sociaux - Accès à la littérature - Microblogs - Bayesian Network - Autorité - Influence - PageRank
Sujets :Informatique
Déposé le :23 Jun 2014 11:24