LogoLogo

Solis, Maikol. Conditional covariance estimation for dimension reduction and sensivity analysis

Solis, Maikol (2014). Conditional covariance estimation for dimension reduction and sensivity analysis.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
1430Kb

Résumé en francais

Cette thèse se concentre autour du problème de l'estimation de matrices de covariance conditionnelles et ses applications, en particulier sur la réduction de dimension et l'analyse de sensibilités. Dans le Chapitre 2 nous plaçons dans un modèle d'observation de type régression en grande dimension pour lequel nous souhaitons utiliser une méthodologie de type régression inverse par tranches. L'utilisation d'un opérateur fonctionnel, nous permettra d'appliquer une décomposition de Taylor autour d'un estimateur préliminaire de la densité jointe. Nous prouverons deux choses : notre estimateur est asymptoticalement normale avec une variance que dépend de la partie linéaire, et cette variance est efficace selon le point de vue de Cramér-Rao. Dans le Chapitre 3, nous étudions l'estimation de matrices de covariance conditionnelle dans un premier temps coordonnée par coordonnée, lesquelles dépendent de la densité jointe inconnue que nous remplacerons par un estimateur à noyaux. Nous trouverons que l'erreur quadratique moyenne de l'estimateur converge à une vitesse paramétrique si la distribution jointe appartient à une classe de fonctions lisses. Sinon, nous aurons une vitesse plus lent en fonction de la régularité de la densité de la densité jointe. Pour l'estimateur de la matrice complète, nous allons appliquer une transformation de régularisation de type "banding". Finalement, dans le Chapitre 4, nous allons utiliser nos résultats pour estimer des indices de Sobol utilisés en analyses de sensibilité. Ces indices mesurent l'influence des entrées par rapport a la sortie dans modèles complexes. L'avantage de notre implémentation est d'estimer les indices de Sobol sans l'utilisation de coûteuses méthodes de type Monte-Carlo. Certaines illustrations sont présentées dans le chapitre pour montrer les capacités de notre estimateur.

Sous la direction du :
Directeur de thèse
Loubes, Jean-Michel
Marteau, Clément
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Mathématiques de Toulouse (IMT), UMR 5219
Mots-clés libres :Dimension reduction - Sensitivity analysis - Conditional covariance - Sliced inverse regression - Sobol indices - Efficient estimator - Parametric rate of convergence
Sujets :Mathématiques
Déposé le :27 Oct 2014 09:54