LogoLogo

Girinon, Vincent. Quelques problèmes aux limites pour les équations de Navier-Stokes

Girinon, Vincent (2008). Quelques problèmes aux limites pour les équations de Navier-Stokes.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
5Mb

Résumé en francais

Cette thèse, composée de quatre chapitres, aborde sur quelques exemples le problème de l'existence de solutions aux équations de Navier-Stokes pour le modèle de l'écoulement isentropique d'un gaz parfait. Le premier chapitre regroupe les théorèmes classiques utilisés pour étudier les équations de Navier-Stokes. Nous y avons ajouté quelques résultats, spécifiquement développés pour ce travail, qui concernent l'équation de conservation de la masse. Dans le second chapitre, nous nous intéressons à un écoulement bidimensionnel entre deux parois parallèles. Le domaine sur lequel sont étudiées les équations est alors un rectangle et le système d'équations est complété par des conditions initiales et des conditions limites portant sur la densité et la vitesse du gaz. Nous fournissons alors une preuve de l'existence d'une solution à ce problème en nous appuyant sur une extension convenable des conditions de bord. Dans le troisième chapitre, en nous inspirant des idées exploitées au chapitre précédent, nous développons l'étude de deux nouveaux exemples. Le premier concerne un problème d'écoulement autour d'une aile d'avion et le second exemple reprend le modèle du chapitre deux en modifiant la vitesse sur le bord du domaine. Le quatrième et dernier chapitre traite de l'existence d'une solution aux équations de Navier-Stokes linéarisées au voisinage d'une solution stationnaire. Nous prouvons un tel résultat dans le cas d'un écoulement semblable à celui étudié au chapitre deux. Enfin, nous terminons ce chapitre en démontrant le caractère exponentiellement stable du système étudié dans le cas monodimensionnel.

Sous la direction du :
Directeur de thèse
Raymond, Jean-Pierre
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Mathématiques de Toulouse (IMT), UMR 5219
Mots-clés libres :compressible Navier-Stokes model - inflow-outflow conditions - global existence of weak solutions
Sujets :Mathématiques
Déposé le :03 Sep 2008 16:42