LogoLogo

Jomaa, Neil. Modélisations multi-physiques avec validations expérimentales des jets de plasmas froids d'hélium à la pression atmosphérique

Jomaa, Neil (2014). Modélisations multi-physiques avec validations expérimentales des jets de plasmas froids d'hélium à la pression atmosphérique.

[img]PDF (L'auteur ne souhaite pas la mise en ligne de sa thèse. L'exemplaire papier peut être consulté ou emprunté à la BU Sciences de Toulouse) - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
77Kb

Résumé en francais

Le développement de sources de plasmas froids stables et bien adaptées aux applications biomédicales est en plein essor notamment pour répondre à des exigences strictes comme une quasi-température ambiante, la production d'espèces actives contrôlées, etc. Les jets de plasmas froids à la pression atmosphérique générés par décharges à barrière diélectrique (DBD) dans l'hélium peuvent répondre à ces exigences. Ils constituent l'objectif de notre étude numérique qui est corrélée aux mesures pour la validation de notre modélisation hydro-électrodynamique. Le dispositif modélisé mis en place dans le groupe est constitué par un tube de quartz de petit diamètre traversé par l'hélium et enveloppé par deux électrodes d'aluminium alimentées par une tension pulsée mono-polaire. L'imagerie rapide a montré que le jet de plasma apparaissant continue est en fait la succession rapide de "balles de plasma" constituant les fronts de l'onde d'ionisation se propageant dans le mélange He-air à l'extérieur du tube, une hypothèse d'onde d'ionisation guidée dont la confirmation constitue l'un des objectifs de ce travail. L'étude menée en 2Drz est basée sur la méthode des éléments finis pour la discrétisation en utilisant le logiciel COMSOL. Trois modèles couplés ont été mis en place pour les études hydrodynamique, électrostatique et électrodynamique. La modélisation hydrodynamique nous a fourni, pour différents rayons du tube et vitesses d'écoulement, la distribution 2Drz de la fraction molaire d'hélium qui se dilue progressivement dans l'air ambiant. Ce mélange gazeux constitue le milieu dans lequel se propage l'onde d'ionisation dont le front d'onde initial au voisinage de la sortie du tube est le champ électrique géométrique. Ce champ a constitué l'objectif de la simulation électrostatique qui nous a permis de quantifier l'influence de chacun des paramètres du dispositif sur la valeur maximale de ce front d'onde initial. Le fruit de cette étude est une configuration optimale validée expérimentalement pour soit optimiser la longueur du jet facilitant la manipulation du jet, soit minimiser la tension appliquée pour réduire le cout énergétique dans le cas d'une longueur fixée du jet. La simulation hydro- électrodynamique du jet est basée sur le système couplé formé par les équations de Poisson, de transport des particules, de conservation de l'énergie électronique, du transport convecto-diffusif et de Navier Stokes. Les données de base nécessaires en entrée comme les coefficients de transport et de réaction ont été déterminés par résolution de l'équation de Boltzmann multi-termes en fonction de la dilution progressive de l'He dans l'air. Chaque cas de simulation de notre modèle multi-physiques, consommateur de temps de calcul (3 jours sur un processeur Xeon), fournit beaucoup d'informations précieuses pour l'optimisation du jet. On peut citer la confirmation de la nature "streamer guidé", l'analyse 2Drz fine à l'aide des cinétiques réactionnelles des différentes phases du jet (développement, propagation à l'intérieur puis à l'extérieur du tube et post-décharge), la détermination du profil de sa vitesse instantanée et de sa longueur, l'identification des mécanismes conduisant à sa forme annulaire observée expérimentalement, l'étude spatio-temporelle de l'énergie électronique moyenne, du champ électrique local générant la seconde onde d'ionisation, du courant électronique et des densités des espèces chargées et neutres comme l'hélium métastable jouant un rôle majeur et l'oxygène atomique pour son importance dans le biomédical. Les bonnes cohérences entre nos résultats et les mesures sont autant d'éléments de validation de notre modèle hydro-électrodynamique. On a mené aussi une étude paramétrique systématique pour quantifier l'effet de la tension et du rayon interne sur les caractéristiques du jet de plasma. On a finalement apporté dans une annexe notre contribution sur la physique de l'interaction entre notre jet et les micro-organismes

Sous la direction du :
Directeur de thèse
Yousfi, Mohammed
Charrada, Kamel
Ecole doctorale:Génie électrique, électronique, télécommunications (GEET)
laboratoire/Unité de recherche :Laboratoire PLAsma et Conversion d'Energie (LAPLACE), UMR 5213
Mots-clés libres :Jet de plasma froids - Pression atmosphérique - Modélisation 2Drz hydro-électrodynamique - Ondes d'ionisation guidées - Décharges à barrière diélectrique - Plasma médecine - Validation expérimentale
Sujets :Sciences de l'ingénieur
Déposé le :05 Jan 2015 10:54