LogoLogo

Fontoura Cupertino, Leandro. Modeling the power consumption of computing systems and applications through machine learning techniques

Fontoura Cupertino, Leandro (2015). Modeling the power consumption of computing systems and applications through machine learning techniques.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
2797Kb

Résumé en francais

Au cours des dernières années, le nombre de systèmes informatiques n'a pas cesser d'augmenter. Les centres de données sont peu à peu devenus des équipements hautement demandés et font partie des plus consommateurs en énergie. L'utilisation des centres de données se partage entre le calcul intensif et les services web, aussi appelés informatique en nuage. La rapidité de calcul est primordiale pour le calcul intensif, mais pour les autres services ce paramètre peut varier selon les accords signés sur la qualité de service. Certains centres de données sont dits hybrides car ils combinent plusieurs types de services. Toutes ces infrastructures sont extrêmement énergivores. Dans ce présent manuscrit nous étudions les modèles de consommation énergétiques des systèmes informatiques. De tels modèles permettent une meilleure compréhension des serveurs informatiques et de leur façon de consommer l'énergie. Ils représentent donc un premier pas vers une meilleure gestion de ces systèmes, que ce soit pour faire des économies d'énergie ou pour facturer l'électricité à la charge des utilisateurs finaux. Les politiques de gestion et de contrôle de l'énergie comportent de nombreuses limites. En effet, la plupart des algorithmes d'ordonnancement sensibles à l'énergie utilisent des modèles de consommation restreints qui renferment un certain nombre de problèmes ouverts. De précédents travaux dans le domaine suggèrent d'utiliser les informations de contrôle fournies par le système informatique lui-même pour surveiller la consommation énergétique des applications. Néanmoins, ces modèles sont soit trop dépendants du type d'application, soit manquent de précision. Ce manuscrit présente des techniques permettant d'améliorer la précision des modèles de puissance en abordant des problèmes à plusieurs niveaux: depuis l'acquisition des mesures de puissance jusqu'à la définition d'une charge de travail générique permettant de créer un modèle lui aussi générique, c'est-à-dire qui pourra être utilisé pour des charges de travail hétérogènes. Pour atteindre un tel but, nous proposons d'utiliser des techniques d'apprentissage automatique.Les modèles d'apprentissage automatique sont facilement adaptables à l'architecture et sont le cœur de cette recherche. Ces travaux évaluent l'utilisation des réseaux de neurones artificiels et la régression linéaire comme technique d'apprentissage automatique pour faire de la modélisation statistique non linéaire. De tels modèles sont créés par une approche orientée données afin de pouvoir adapter les paramètres en fonction des informations collectées pendant l'exécution de charges de travail synthétiques. L'utilisation des techniques d'apprentissage automatique a pour but d'atteindre des estimateurs de très haute précision à la fois au niveau application et au niveau système. La méthodologie proposée est indépendante de l'architecture cible et peut facilement être reproductible quel que soit l'environnement. Les résultats montrent que l'utilisation de réseaux de neurones artificiels permet de créer des estimations très précises. Cependant, en raison de contraintes de modélisation, cette technique n'est pas applicable au niveau processus. Pour ce dernier, des modèles prédéfinis doivent être calibrés afin d'atteindre de bons résultats.

Sous la direction du :
Directeur de thèse
Pierson, Jean-Marc
Da Costa, Georges
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Recherche en Informatique de Toulouse (IRIT), UMR 5505
Mots-clés libres :Power aware computing - Statistical modeling - Machine learning - Application power models
Sujets :Informatique
Déposé le :03 Nov 2015 14:40