LogoLogo

Di Sabatino, Stefano. Reduced density-matrix functional theory: correlation and spectroscopy

Di Sabatino, Stefano (2015). Reduced density-matrix functional theory: correlation and spectroscopy.

[img]PDF (Accès restreint. S'adresser à l'accueil de la BU Sciences de Toulouse) - Accès intranet - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
3565Kb

Résumé en francais

Cette thèse traite de la description de la corrélation électronique et de la spectroscopie dans le cadre de la Théorie de la Fonctionnelle de la Matrice Densité Réduite (RDMFT). Dans la RDMFT, les propriétés de l'état fondamental d'un système physique sont des fonctionnelles de la matrice densité à un corps. Plusieurs approximations à la corrélation électronique ont été proposées dans la littérature. Beaucoup d'entre elles peuvent être reliés au travail de Müller, qui en a proposé une similaire à l'approximation Hartree-Fock mais qui peut produire des nombres d'occupation fractionnaires. Cela n'est pas toujours suffisant, notamment dans les matériaux fortement corrélés. Par ailleurs, l'expression des observables du système en terme de la matrice densité n'est pas toujours connue. Tel est le cas, par exemple, pour la fonction spectrale, qui est liée aux spectres de photoémission. Dans ce cas, il y a des annulations d'erreur entre l'approximation à la corrélation électronique et l'approximation à l'observable, ce qui affaiblit la théorie. Dans cette thèse, nous recherchons des approximations plus précises en exploitant le lien entre les matrices densité et les fonctions de Green. Dans la première partie de la thèse, nous nous concentrons sur la fonction spectrale. En utilisant le modèle de Hubbard, qui peut être résolu exactement, nous analysons les approximations existantes à cette observable et nous soulignons leurs points faibles. Ensuite, à partir de sa définition en terme de la fonction de Green à un corps nous dérivons une expression pour la fonction spectrale qui dépend des nombres d'occupation naturels et d'une énergie efficace qui prend en compte toutes les excitations du système. Cette énergie efficace dépend de la matrice densité à un corps ainsi que des ordres supérieurs. Des approximations simples à cette énergie efficace donnent des spectres précis dans des systèmes modèles dans des régimes à la fois de faible et de forte corrélation. Pour illustrer notre méthode sur les matériaux réels, nous calculons le spectre de photoemission du NiO massif: notre méthode donne une image qualitativement correcte dans la phase antiferromagnétique et dans la phase paramagnétique, contrairement aux méthodes de champ moyen utilisés actuellement, qui donnent un métal dans le dernier cas. La deuxième partie de la thèse est plus explorative et traite des phénomènes dépendant du temps dans la RDMFT. En général, l'évolution temporelle des matrices densité est donnée par la hiérarchie des équations de Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY), dans lequel l'équation du mouvement de la matrice densité a n corps est donnée en termes de la matrice densité à n+1 corps. La première équation de la hiérarchie relie la matrice densité à un corps à la matrice densité à deux corps. La tâche difficile est de trouver des approximations à la matrice densité à deux corps. Les approximations existantes sont des extensions adiabatiques des approximations de l'état fondamental. Nous explorons cette question en examinant de nouvelles approximations qui nous tirons de la théorie à plusieurs corps (MBPT) basée sur les fonctions de Green ainsi que de la solution exacte du modèle de Anderson à deux niveaux dans son état fondamental. Nos premiers résultats sur le modèle de Anderson soumis à divers champs externes montrent quelques caractéristiques intéressantes, qui suggèrent d'explorer davantage ces approximations aussi sur des systèmes modèles plus grands.

Sous la direction du :
Directeur de thèse
Romaniello, Pina
Ecole doctorale:Sciences de la matière (SdM)
laboratoire/Unité de recherche :Laboratoire de Physique Théorique - Toulouse (LPT), UMR 5152
Mots-clés libres :RDMFT - TDRDMFT - MBPT - Green's functions - Correlation - Spectroscopy
Sujets :Physique
Déposé le :15 Jan 2016 16:52