LogoLogo

Conrath, Juliette. Unsupervised extraction of semantic relations using discourse information

Conrath, Juliette (2015). Unsupervised extraction of semantic relations using discourse information.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
1516Kb

Résumé en francais

La compréhension du langage naturel repose souvent sur des raisonnements de sens commun, pour lesquels la connaissance de relations sémantiques, en particulier entre prédicats verbaux, peut être nécessaire. Cette thèse porte sur la problématique de l'utilisation d'une méthode distributionnelle pour extraire automatiquement les informations sémantiques nécessaires à ces inférences de sens commun. Des associations typiques entre des paires de prédicats et un ensemble de relations sémantiques (causales, temporelles, de similarité, d'opposition, partie/tout) sont extraites de grands corpus, par l'exploitation de la présence de connecteurs du discours signalant typiquement ces relations. Afin d'apprécier ces associations, nous proposons plusieurs mesures de signifiance inspirées de la littérature ainsi qu'une mesure novatrice conçue spécifiquement pour évaluer la force du lien entre les deux prédicats et la relation. La pertinence de ces mesures est évaluée par le calcul de leur corrélation avec des jugements humains, obtenus par l'annotation d'un échantillon de paires de verbes en contexte discursif. L'application de cette méthodologie sur des corpus de langue française et anglaise permet la construction d'une ressource disponible librement, Lecsie (Linked Events Collection for Semantic Information Extraction). Celle-ci est constituée de triplets: des paires de prédicats associés à une relation; à chaque triplet correspondent des scores de signifiance obtenus par nos mesures.Cette ressource permet de dériver des représentations vectorielles de paires de prédicats qui peuvent être utilisées comme traits lexico-sémantiques pour la construction de modèles pour des applications externes. Nous évaluons le potentiel de ces représentations pour plusieurs applications. Concernant l'analyse du discours, les tâches de la prédiction d'attachement entre unités du discours, ainsi que la prédiction des relations discursives spécifiques les reliant, sont explorées. En utilisant uniquement les traits provenant de notre ressource, nous obtenons des améliorations significatives pour les deux tâches, par rapport à plusieurs bases de référence, notamment des modèles utilisant d'autres types de représentations lexico-sémantiques. Nous proposons également de définir des ensembles optimaux de connecteurs mieux adaptés à des applications sur de grands corpus, en opérant une réduction de dimension dans l'espace des connecteurs, au lieu d'utiliser des groupes de connecteurs composés manuellement et correspondant à des relations prédéfinies. Une autre application prometteuse explorée dans cette thèse concerne les relations entre cadres sémantiques (semantic frames, e.g. FrameNet): la ressource peut être utilisée pour enrichir cette structure par des relations potentielles entre frames verbaux à partir des associations entre leurs verbes. Ces applications diverses démontrent les contributions prometteuses amenées par notre approche permettant l'extraction non supervisée de relations sémantiques.

Sous la direction du :
Directeur de thèse
Asher, Nicholas
Muller, Philippe
Afantenos, Stergos
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Recherche en Informatique de Toulouse (IRIT), UMR 5505
Mots-clés libres :Traitement automatique du langage naturel - Sémantique distributionnelle - Sémantique lexicale - Analyse du discours
Sujets :Informatique
Déposé le :18 Feb 2016 11:30