LogoLogo

Mezghani, Manel. Analyse des réseaux sociaux : vers une adaptation de la navigation sociale

Mezghani, Manel (2015). Analyse des réseaux sociaux : vers une adaptation de la navigation sociale.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
5Mb

Résumé en francais

L'avènement du web 2.0, centré utilisateur, a fait émerger une quantité importante d'informations (personnelles, collectives, partagées, "aimées", etc.). Ces informations peuvent constituer une aide pour les utilisateurs en les guidant vers l'information recherchée. Cependant, cette quantité rend l'accès à l'information partagée de plus en plus difficile, vu la diversité des contenus qui peuvent intéresser l'utilisateur. La désorientation de l'utilisateur est donc l'un des principaux problèmes liés aux médias sociaux. Pour surmonter ce problème, l'adaptation constitue une solution classique qui peut être appliquée dans un contexte social. Avec l'évolution des réseaux sociaux, de nouvelles notions apparaissent comme la navigation sociale, qui est une manière de naviguer en étant influencé par les autres utilisateurs du réseau. Une autre notion importante est celle de "tag". Ce terme définit les annotations sociales créées par les utilisateurs et associées à des ressources. La navigation peut être dès lors effectuée aussi bien par les liens qu'à travers les tags. Adapter la navigation sociale, signifie la rendre plus ciblée pour chaque utilisateur selon ses intérêts. Concrètement, cela peut se faire en recommandant à chaque utilisateur des tags, qu'il pourra suivre ou non. Pour cela, il faut garantir une détection adéquate des intérêts de l'utilisateur ainsi que la prise en compte de leur évolution. Cependant, nous sommes confrontés à des limites liées à : i) la détection des intérêts, puisque ces derniers peuvent être déduits de plusieurs ressources sociales (des amis, des ressources, des tags, etc.). Leur pertinence est primordiale afin de garantir un résultat d'adaptation adéquat. ii) la mise à jour du profil utilisateur. En effet, l'utilisateur social, est caractérisé par sa grande activité sociale, et par conséquent ses intérêts doivent refléter ses "vrais" intérêts à chaque période de temps afin d'aboutir à une adaptation fiable. Afin de résoudre les problèmes affectant la qualité d'adaptation de la navigation sociale cités ci-dessus, nous avons proposé en premier lieu, une approche de détection des intérêts de l'utilisateur. Cette approche analyse les tags des utilisateurs selon le contenu de leurs ressources respectives. La plupart des recherches ne considèrent pas l'exactitude des tags vis-à-vis du contenu des ressources : cette exactitude reflète si l'utilisateur peut vraiment être intéressé par le contenu ou pas. Les tags précis sont ceux qui reflètent fidèlement le contenu des ressources. Ceci est effectué grâce à l'interrogation du réseau de l'utilisateur et de l'analyse de son comportement d'annotation. Notre approche repose sur l'hypothèse qu'un utilisateur qui annote la ressource par des tags reflétant le contenu de ladite ressource, reflète mieux ses "vrais" intérêts. Nous avons proposé en deuxième lieu, une approche de mise à jour des intérêts des utilisateurs. Nous nous sommes intéressés aux techniques d'enrichissement du profil utilisateur est effectué par l'ajout des intérêts jugés pertinents à un moment donné. L'enrichissement dans un contexte social est effectué selon l'information sociale comme les personnes proches qui partagent avec l'utilisateur des comportements en communs, selon le comportement d'annotation des utilisateurs, et selon les métadonnées des ressources annotées. Le choix de ces informations est effectué selon l'étude de leur influence sur l'évolution des intérêts de l'utilisateur. L'approche d'enrichissement nous a servi à proposer des recommandations (de tags) selon les nouveaux tags ajoutés au profil utilisateur.Ces deux contributions ont été testées sur la base sociale Delicious. Elles ont montré un taux de précision assez important. Elles ont aussi prouvé leur efficacité par rapport à des méthodes classiques. De plus, le taux d'ambigüité associé aux tags a été fortement réduit, grâce au filtrage implicite des tags non pertinents par rapport au contenu des ressources.

Sous la direction du :
Directeur de thèse
Sedes, Florence
Amous, Ikram
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Recherche en Informatique de Toulouse (IRIT), UMR 5505 ; Multimedia, InfoRmation Systems and Advanced Computing Laboratory (MIRACL), University of Sfax, Tunisia
Mots-clés libres :Adaptation - Réseau social - Profil utilisateur - Tags - Détection des intérêts - Enrichissement
Sujets :Informatique
Déposé le :01 Mar 2016 12:51