LogoLogo

Gargouri, Ameni. On the perturbations theory of the Duffing oscillator in a complex domain

Gargouri, Ameni (2015). On the perturbations theory of the Duffing oscillator in a complex domain.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
1040Kb

Résumé en francais

La thèse concerne l'étude des cycles limites d'une équation différentielle sur le plan (la deuxième partie du 16ème problème de Hilbert). La notion de "cycle limite" a une grande importance dans la théorie de la stabilité, elle est introduite par Poincaré vers la fin du 19ème siècle et désigne une orbite périodique isolée. Le but de cette thèse est : d'établir l'existence d'une borne supérieure finie, pour le nombre de cycle limites d'une équation quadratique dans le plan. Ce problème est aussi appelé 16ème problème d' Hilbert infinitésimal. Probablement, l'outil le plus fondamental pour l'étude de la stabilité et les bifurcations des orbites périodiques est l'application de Poincaré, défini par Henri Poincaré en 1881. Cependant, la méthode de Melnikov nous donne une excellente procédure pour déterminer le nombre de cycles limites dans une bande continue de cycles qui sont préservés sous perturbation. En effet, le nombre, les positions et les multiplicités des équations différentielles planes perturbées avec une petite perturbation non nulle sont déterminées par le nombre, les positions et les multiplicités des zéros des fonctions génératrices. La fonction de Melnikov est plus précisément, appelé la fonction de Melnikov de premier- ordre. Si cette fonction est identiquement nulle à travers la bande continue de cycles, on calcule ce qu'on appelle " la fonction de Melnikov d'ordre supérieure ". Ensuite, une analyse d'ordre supérieure est nécessaire, ce qui peut être fait par " l'algorithme de Françoise. Les discussions et les calculs présentés dans notre travail sont limités non seulement à la fonction de Melnikov de premier ordre, mais aussi pour les fonctions de Melnikov de deuxième -ordre. Ces outils seront utiles pour résoudre notre problématique. Les activités de recherche menées dans le cadre de cette recherche sont divisées en quatre parties : La première partie de cette thèse, traite les systèmes dynamiques plans et l'existence de cycles limites. Nous souhaitons après résoudre le problème suivant: Calculer la cyclicité de l'oscillateur asymétrique perturbé de Duffing. Dans la deuxième partie, nous sommes intéressés de la cyclicité à l'extérieur de l'anneau périodique de l'oscillateur de Duffing pour une perturbation particulière, puis, nous fournissons un diagramme de bifurcation complet pour le nombre de zéros de la fonction de Melnikov associée dans un domaine complexe approprié en se basant sur le principe de l'argument. Le nombre de cette cyclicité est égal à trois. Dans la troisième partie, nous étudions la cyclicité à l'intérieur ainsi que à l'extérieur de double boucle homocline pour une perturbation cubique arbitraire de l'oscillateur de Duffing en utilisant les mêmes techniques de Iliev et Gavrilov dans le cas d'un Hamiltonien asymétrique de degré quatre. Notre principal résultat est que deux au plus cycle limite peuvent bifurquer de la double homocline. D'autre part, il est représenté, qu'après bifurcation de eight-loop un cycle limite étranger est née, qui ne soit pas contrôlée par un zéro lié par les intégrales Abéliennes, ce cycle supplémentaire est appelé " Alien ".

Sous la direction du :
Directeur de thèse
Gavrilov, Lubomir
Hammami, Mohamed Ali
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Mathématiques de Toulouse (IMT), UMR 5219 ; Stability and Control Systems an Non Linear PDE Laboratory, Sfax University, Tunisia
Mots-clés libres :Oscillateur de Duffing - Perturbations - Domaine complexe - 16ème problème d'Hilberst
Sujets :Mathématiques
Déposé le :04 May 2016 10:26