LogoLogo

Lopez, Florent. Task-based multifrontal QR solver for heterogeneous architectures

Lopez, Florent (2015). Task-based multifrontal QR solver for heterogeneous architectures.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
3437Kb

Résumé en francais

Afin de s'adapter aux architectures multicoeurs et aux machines de plus en plus complexes, les modèles de programmations basés sur un parallélisme de tâche ont gagné en popularité dans la communauté du calcul scientifique haute performance. Les moteurs d'exécution fournissent une interface de programmation qui correspond à ce paradigme ainsi que des outils pour l'ordonnancement des tâches qui définissent l'application. Dans cette étude, nous explorons la conception de solveurs directes creux à base de tâches, qui représentent une charge de travail extrêmement irrégulière, avec des tâches de granularités et de caractéristiques différentes ainsi qu'une consommation mémoire variable, au-dessus d'un moteur d'exécution. Dans le cadre du solveur qr mumps, nous montrons dans un premier temps la viabilité et l'efficacité de notre approche avec l'implémentation d'une méthode multifrontale pour la factorisation de matrices creuses, en se basant sur le modèle de programmation parallèle appelé "flux de tâches séquentielles" (Sequential Task Flow). Cette approche, nous a ensuite permis de développer des fonctionnalités telles que l'intégration de noyaux dense de factorisation de type "minimisation de cAfin de s'adapter aux architectures multicoeurs et aux machines de plus en plus complexes, les modèles de programmations basés sur un parallélisme de tâche ont gagné en popularité dans la communauté du calcul scientifique haute performance. Les moteurs d'exécution fournissent une interface de programmation qui correspond à ce paradigme ainsi que des outils pour l'ordonnancement des tâches qui définissent l'application. Dans cette étude, nous explorons la conception de solveurs directes creux à base de tâches, qui représentent une charge de travail extrêmement irrégulière, avec des tâches de granularités et de caractéristiques différentes ainsi qu'une consommation mémoire variable, au-dessus d'un moteur d'exécution. Dans le cadre du solveur qr mumps, nous montrons dans un premier temps la viabilité et l'efficacité de notre approche avec l'implémentation d'une méthode multifrontale pour la factorisation de matrices creuses, en se basant sur le modèle de programmation parallèle appelé "flux de tâches séquentielles" (Sequential Task Flow). Cette approche, nous a ensuite permis de développer des fonctionnalités telles que l'intégration de noyaux dense de factorisation de type "minimisation de cAfin de s'adapter aux architectures multicoeurs et aux machines de plus en plus complexes, les modèles de programmations basés sur un parallélisme de tâche ont gagné en popularité dans la communauté du calcul scientifique haute performance. Les moteurs d'exécution fournissent une interface de programmation qui correspond à ce paradigme ainsi que des outils pour l'ordonnancement des tâches qui définissent l'application. !!br0ken!!ommunications" (Communication Avoiding) dans la méthode multifrontale, permettant d'améliorer considérablement la scalabilité du solveur par rapport a l'approche original utilisée dans qr mumps. Nous introduisons également un algorithme d'ordonnancement sous contraintes mémoire au sein de notre solveur, exploitable dans le cas des architectures multicoeur, réduisant largement la consommation mémoire de la méthode multifrontale QR avec un impacte négligeable sur les performances. En utilisant le modèle présenté ci-dessus, nous visons ensuite l'exploitation des architectures hétérogènes pour lesquelles la granularité des tâches ainsi les stratégies l'ordonnancement sont cruciales pour profiter de la puissance de ces architectures. Nous proposons, dans le cadre de la méthode multifrontale, un partitionnement hiérarchique des données ainsi qu'un algorithme d'ordonnancement capable d'exploiter l'hétérogénéité des ressources. Enfin, nous présentons une étude sur la reproductibilité de l'exécution parallèle de notre problème et nous montrons également l'utilisation d'un modèle de programmation alternatif pour l'implémentation de la méthode multifrontale. L'ensemble des résultats expérimentaux présentés dans cette étude sont évalués avec une analyse détaillée des performance que nous proposons au début de cette étude. Cette analyse de performance permet de mesurer l'impacte de plusieurs effets identifiés sur la scalabilité et la performance de nos algorithmes et nous aide ainsi à comprendre pleinement les résultats obtenu lors des tests effectués avec notre solveur.

Sous la direction du :
Directeur de thèse
Daydé, Michel
Buttari, Alfredo
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Recherche en Informatique de Toulouse (IRIT), UMR 5505
Mots-clés libres :Méthodes directes de résolution de systèmes linéaires - Méthode multifrontale - Multicœur - Moteurs d'exécutions - Ordonnancement, algorithmes d'ordonnancement sous contraintes mémoire - Architectures hétérogènes - Calcul haute performance - GPU
Sujets :Informatique
Déposé le :03 May 2016 14:22