LogoLogo

Stumm, Elena. Location models for visual place recognition

Stumm, Elena (2015). Location models for visual place recognition.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
2822Kb

Résumé en francais

Cette thèse traite de la cartographie et de la reconnaissance de lieux par vision en robotique mobile. Les recherches menées visent à identifier comment les modèles de localisation peuvent être améliorés en enrichissant les représentations existantes afin de mieux exploiter l'information visuelle disponible. Les problèmes de la cartographie et de la reconnaissance visuelle de lieux présentent un certain nombre de défis : les solutions doivent notamment être robustes vis-à-vis des scènes similaires, des changements de points de vue de d'éclairage, de la dynamique de l'environnement, du bruit des données acquises. La définition de la manière de modéliser et de comparer les observations de lieux est donc un élément crucial de définition d'une solution opérationnelle. Cela passe par la spécification des caractéristiques des images à exploiter, par la définition de la notion de lieu, et par des algorithmes de comparaison des lieux. Dans la littérature, les lieux visuels sont généralement définis par un ensemble ou une séquence d'observations, ce qui ne permet pas de bien traiter des problèmes de similarité de scènes ou de reconnaissance invariante aux déplacements. Dans nos travaux, le modèle d'un lieu exploite la structure d'une scène représentée par des graphes de covisibilité, qui capturent des relations géométriques approximatives entre les points caractéristiques observés. Grâce à cette représentation, un lieu est identifié et reconnu comme un sous-graphe. La reconnaissance de lieux exploite un modèle génératif, dont la sensibilité par rapport aux similarités entre scènes, aux bruits d'observation et aux erreurs de cartographie est analysée. En particulier, les probabilités de reconnaissance sont estimées de manière rigoureuse, rendant la reconnaissance des lieux robuste, et ce pour une complexité algorithme sous-linéaire en le nombre de lieux définis. Enfin les modèles de lieux basés sur des sacs de mots visuels sont étendus pour exploiter les informations structurelles fournies par le graphe de covisibilité, ce qui permet un meilleur compromis entre la qualité et la complexité du processus de reconnaissance.

Sous la direction du :
Directeur de thèse
Lacroix, Simon
Mei, Christopher
Ecole doctorale:Systèmes
laboratoire/Unité de recherche :Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS) - CNRS
Mots-clés libres :Reconnaissance visuelle de lieux - Graphes de covisibilité - Modèles probabilistes - Cartographie
Sujets :Sciences de l'ingénieur
Déposé le :06 Dec 2016 09:48