LogoLogo

Boyer, Stanislas. Contribution de l'analyse du signal vocal à la détection de l'état de somnolence et du niveau de charge mentale

Boyer, Stanislas (2016). Contribution de l'analyse du signal vocal à la détection de l'état de somnolence et du niveau de charge mentale.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
14Mb

Résumé en francais

Les exigences opérationnelles du métier de pilote sont susceptibles d'engendrer de la somnolence et des niveaux de charge mentale inadéquats (i.e., trop faible ou trop élevé) au cours des vols. Les dettes de sommeil et les perturbations circadiennes liées à divers facteurs (e.g., longues périodes de services, horaires de travail irrégulier, etc.) demandent aux pilotes de repousser sans cesse leurs limites biologiques. Par ailleurs, la charge de travail mental des pilotes présente de fortes variations au cours d'un vol : élevée au cours des phases critiques (i.e., décollage et atterrissage), elle devient très réduite pendant les phases de croisière. Lorsque la charge mentale devient trop élevée ou, à l'inverse, trop faible, les performances se dégradent et des erreurs de pilotage peuvent apparaître. La mise en oeuvre de méthodes de détection de l'état de somnolence et du niveau de charge mentale en temps quasi réel est un défi majeur pour le suivi et le contrôle de l'activité de pilotage. L'objectif de la thèse est de déterminer si la voix humaine peut permettre de détecter d'une part, l'état de somnolence et d'autre part, le niveau de charge mentale d'un individu. Dans une première étude, la voix de participants a été enregistrée lors d'une tâche de lecture avant et après une nuit de privation totale de sommeil (PTS). Les variations de l'état de somnolence consécutives à la PTS ont été évaluées au moyen de mesures auto-évaluatives et électrophysiologiques (ÉlectroEncéphaloGraphie [EEG] et Potentiels Évoqués [PEs]). Les résultats ont montré une variation significative après la PTS de plusieurs paramètres acoustiques liés : (a) à l'amplitude des impulsions glottiques (fréquence de modulation d'amplitude), (b) à la forme du signal acoustique (longueur euclidienne du signal et ses caractéristiques associées) et (c) au spectre du signal des voyelles (rapport harmonique sur bruit, fréquence du second formant, coefficient d'asymétrie, centre de gravité spectral, différences d'énergie, pente spectrale et coefficients cepstraux à échelle Mel). La plupart des caractéristiques spectrales ont montré une sensibilité différente à la privation de sommeil en fonction du type de voyelles. Des corrélations significatives ont été mises en évidence entre plusieurs paramètres acoustiques et plusieurs indicateurs objectifs (EEG et PEs) de l'état de somnolence. Dans une seconde étude, le signal vocal a été enregistré durant une tâche de rappel de listes de mots. La difficulté de la tâche était manipulée en faisant varier le nombre de mots dans chaque liste (i.e., entre un et sept, correspondant à sept conditions de charge mentale). Le diamètre pupillaire - qui est un indicateur objectif pertinent du niveau de charge mentale - a été mesuré simultanément avec l'enregistrement de la voix afin d'attester de la variation du niveau de charge mentale durant la tâche expérimentale. Les résultats ont montré que des paramètres acoustiques classiques (fréquence fondamentale et son écart type, shimmer, nombre de périodes et rapport harmonique sur bruit) et originaux (fréquence de modulation d'amplitude et variations à court-terme de la longueur euclidienne du signal) ont été particulièrement sensibles aux variations de la charge mentale. Les variations de ces paramètres acoustiques étaient corrélées à celles du diamètre pupillaire. L'ensemble des résultats suggère que les paramètres acoustiques de la voix humaine identifiés lors des expérimentations pourraient représenter des indicateurs pertinents pour la détection de l'état de somnolence et du niveau de charge mentale d'un individu. Les résultats ouvrent de nombreuses perspectives de recherche et d'applications dans le domaine de la sécurité des transports, notamment dans le secteur aéronautique.

Sous la direction du :
Directeur de thèse
Daurat, Agnès
Ruiz, Robert
Ecole doctorale:Aéronautique, astronautique (AA)
laboratoire/Unité de recherche :Laboratoire Cognition, Langues, Langage, Ergonomie (CLLE), UMR 5263
Mots-clés libres :Voix - Paramètres acoustiques - Somnolence - Charge mentale - Sécurité aérienne - Pilotes d'avion
Sujets :Généralites en Sciences
Déposé le :16 Jan 2017 14:39