LogoLogo

Klein, Naiara Yohanna. Nanofils magnétiques et semiconducteurs : adressage, caractérisation électriques et magnétiques et applications

Klein, Naiara Yohanna (2015). Nanofils magnétiques et semiconducteurs : adressage, caractérisation électriques et magnétiques et applications.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
4Mb

Résumé en francais

La nanotechnologie a pris un rôle clé dans le développement technologique actuel de façon extrêmement grande et interdisciplinaire. L'utilisation de nanofils dans la construction de structures/dispositifs plus complexe peut être entrevue en raison de sa polyvalence. Comprendre la fabrication de nanofils et être capable de les caractériser est extrêmement important pour ce développement. Des dispositifs à base de nanofils semi-conducteurs et ferromagnétiques ont été étudiés dans cette thèse, abordant les techniques de croissance et d'adressage pour des caractérisations électroniques et structurelles, et pour des développements à grande échelle pour des applications industrielles. Les nanofils de cobalt ont été électro déposés à différents pH permettant d'associer le pH de la solution à la caractérisation de la structure cristalline. Les nanofils de semiconducteurs ont été crus par CVD. L'adressage et l'alignement des nanofils ont été faits par diélectrophorèse couplé avec l'assemblage capillaire. Pour caractériser les nanofils, des techniques de lithographie optique et électronique ont été utilisés pour la fabrication des contacts. Une étude d'interface matériaux semiconducteurs/siliciure a été réalisée démontrant que les valeurs de barrière Schottky sont différentes entre des nanofils de silicium et des matériaux massifs. Dans le cas de nanofils InAs la barrière est imperceptible et il a été constaté que le fil de ZnO était de type p. Les applications ont démontrées différents dispositifs, tels que les transistors, les vannes de spin, capteurs de gaz, de l'humidité et de la lumière. Dans le cadre de vannes de spin, la caractérisation de l'interface semiconducteur/ferromagnétique a permis d'associer la valeur de la hauteur de barrière de Schottky à l'épaisseur de SiO2, qui agit comme une barrière à effet tunnel. Grâce aux mesures de transistors à effet de champ (FET) , nous avons pu identifier le type de porteurs de charge pour chaque matériau, extraire leur mobilité, la tension de seuil... Les capteurs ont été fabriqués à base de nanofils en Si, InAs, et ZnO, afin d'être utilisés comme capteurs de lumière, l'humidité et les gaz. Cette thèse propose une amélioration des technologiques actuelles d'adressage de nanostructures et l'utilisation des propriétés à l'échelle nanométrique pour des dispositifs plus efficaces et une large applicabilité, fournissant la base pour de futures études et les réalisations pratiques des nanosciences et des nanotechnologies.

Sous la direction du :
Directeur de thèse
Larrieu, Guilhem
Sampaio Lima, Luiz Carlos
Ecole doctorale:Génie électrique, électronique, télécommunications (GEET)
laboratoire/Unité de recherche :Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS) - CNRS ; Departemento de Fisica de Baixas Energias, Centro Brasileiro de Pesquisas fisicas
Mots-clés libres :Nanofils semi-conducteurs et ferromagnétiques - Nanofabrication - Adressage - Mesures de transport électroniques - Dispositifs à base de nanofils
Sujets :Sciences de l'ingénieur
Déposé le :31 Jan 2017 17:15