LogoLogo

Ngom, Waly. Contributions à l'étude de l'instant de défaut d'un processus de Lévy en observation complète et incomplète

Ngom, Waly (2016). Contributions à l'étude de l'instant de défaut d'un processus de Lévy en observation complète et incomplète.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
1009Kb

Résumé en francais

Dans nos travaux, nous avons considéré un processus de Lévy X avec une composante brownienne non nulle et dont la partie à sauts est un processus de Poisson composé. Nous avons supposé que la valeur d'une entreprise est modélisée par un processus stochastique de la forme V = Vo exp X et que cette entreprise est mise à défaut dès lors que sa valeur passe sous un certain seuil b déterminé de façon exogène et qui donc, est une donnée du problème. L'instant de défaut T est alors de la forme Tx pour x= ln(Vo) ln((b) où x> 0, Tx = inf{t 2:0: X, 2:x}. Dans un premier temps, nous supposons que des agents observant la valeur V des ac­tifs de la firme souhaitent connaître le comportement de l'instant de défaut. Dans ce modèle, au chapitre 2, nous avons étudié d'une part la régularité de la densité de la loi de l'instant de défaut. D'autre part, nous avons étudié la loi conjointe de l'instant de défaut, de l'overshoot et de l'undershoot. Au chapitre 3, nous avons obtenu une équation à valeurs mesures dont le quadriplet formé par la variable aléatoire X,, le su­ premum du processus X à l'instant t, le supremum du processus X au dernier instant de saut avant l'instant t et le dernier instant de saut à l'instant t est solution au seris faible, puis une équation dont ce quadriplet est une solution forte. Dans un second temps, au chapitre 4, nous avons supposé que des investisseurs souhaitant détenir une part de cette entreprise ne disposent pas de l'information complète. Ils n'observent pas la valeur des actifs de la firme V, mais sa valeur bruitée. Leur information est modélisée par la filtration Ç = (Ç,, t 2: 0) engendrée par cette observation. Dans ce modèle, nous avons montré que la loi conditionnelle de l'instant de défaut sachant la tribu Ç, admet une densité par rapport à la mesure de Lebesgue et obtenu une équation de Volttera dont cette densité est solution. Cette connaissance permet aux investisseurs de prévoir au vu de leur information, quand est-ce que l'instant de défaut va intervenir après l'instant t. Nous avons complété ce travail par des simulations numériques.

Sous la direction du :
Directeur de thèse
Coutin, Laure
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Mathématiques de Toulouse (IMT), UMR 5219
Mots-clés libres :Processus de Lévy - Instant de défaut - Equations aux dérivées partielles - Théorie du filtrage - Observation complète - Observation incomplète
Sujets :Mathématiques
Déposé le :04 Feb 2017 10:28