LogoLogo

Verstaevel, Nicolas. Self-organization of robotic devices through demonstrations

Verstaevel, Nicolas (2016). Self-organization of robotic devices through demonstrations.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
1928Kb

Résumé en francais

La théorie des AMAS (Adaptive Multi-Agent Systems) propose de résoudre des problèmes complexes par auto-organisation pour lesquels aucune solution algorithmique n'est connue. Le comportement auto-organisateur des agents coopératifs permet au système de s'adapter à un environnement dynamique pour maintenir le système dans un état de fonctionnement adéquat. Dans cette thèse, cette approche a été appliquée au contrôle dans les systèmes ambiants, et plus particulièrement à la robotique de service. En effet, la robotique de service tend de plus en plus à s'intégrer à des environnements ambiants, on parle alors de robotique ambiante. Les systèmes ambiants présentent des caractéristiques, telles que l'ouverture et l'hétérogénéité, qui rendent la tâche de contrôle particulièrement complexe. Cette complexité est accrue si l'on prend en compte les besoins spécifiques, changeants et parfois contradictoires des utilisateurs. Les travaux de cette thèse proposent d'utiliser les principes de l'auto-organisation, pour concevoir un système multi-agent capable d'apprendre en temps réel à contrôler un système à partir des démonstrations faites par un tuteur. C'est l'apprentissage par démonstration. En observant l'activité de l'utilisateur et en apprenant le contexte dans lequel l'utilisateur agit, le système apprend une politique de contrôle pour satisfaire les utilisateurs. Nous proposons un nouveau paradigme de conception des systèmes robotiques sous le nom d'Extreme Sensitive Robotics. L'idée de base de ce paradigme est de distribuer le contrôle au sein des différentes fonctionnalités qui composent un système et de doter chacune de ces fonctionnalités de la capacité à s'adapter de manière autonome à son environnement. Pour évaluer l'apport de ce paradigme, nous avons conçu ALEX (Adaptive Learner by EXperiments), un système multi-agent adaptatif dont la fonction est d'apprendre, en milieux ambiants, à contrôler un dispositif robotique à partir de démonstrations. L'approche par AMAS permet la conception de logiciels à fonctionnalités émergentes. La solution à un problème émerge des interactions coopératives entre un ensemble d'agents autonomes, chaque agent ne possédant qu'une vue partielle de l'environnement. L'application de cette approche nous conduit à isoler les différents agents impliqués dans le problème du contrôle et à décrire leurs comportements locaux. Ensuite, nous identifions un ensemble de situations de non coopération susceptibles de nuire à leurs comportements et proposons un ensemble de mécanismes pour résoudre et anticiper ces situations. Les différentes expérimentations ont montré la capacité du système à apprendre en temps réel à partir de l'observation de l'activité de l'utilisateur et ont mis en évidence les apports, les limitations et les perspectives offertes par notre approche à la problématique du contrôle de systèmes ambiants.

Sous la direction du :
Directeur de thèse
Gleizes, Marie-Pierre
Régis, Christine
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Recherche en Informatique de Toulouse (IRIT), UMR 5505
Mots-clés libres :Système multi-agent adaptatifs - Théorie des AMAS - Apprentissage par démonstrations - Auto-organisation - Robotique - Systèmes ambiants - Prise en compte du contexte
Sujets :Informatique
Déposé le :03 Feb 2017 17:22