LogoLogo

Godoy Campbell, Matías. Sur le problème inverse de détection d'obstacles par des méthodes d'optimisation

Godoy Campbell, Matías (2016). Sur le problème inverse de détection d'obstacles par des méthodes d'optimisation.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
6Mb

Résumé en francais

Cette thèse porte sur l'étude du problème inverse de détection d'obstacle/objet par des méthodes d'optimisation. Ce problème consiste à localiser un objet inconnu oméga situé à l'intérieur d'un domaine borné connu Oméga à l'aide de mesures de bord et plus précisément de données de Cauchy sur une partie Gammaobs de thetaOmega. Nous étudions les cas scalaires et vectoriels pour ce problème en considérant les équations de Laplace et de Stokes. Dans tous les cas, nous nous appuyons sur une résultat d'identifiabilité qui assure qu'il existe un unique obstacle/objet qui correspond à la mesure de bord considérée. La stratégie utilisée dans ce travail est de réduire le problème inverse à la minimisation d'une fonctionnelle coût: la fonctionnelle de Kohn-Vogelius. Cette approche est fréquemment utilisée et permet notamment d'utiliser des méthodes d'optimisation pour des implémentations numériques. Cependant, afin de bien définir la fonctionnelle, cette méthode nécessite de connaître une mesure sur tout le bord extérieur thetaOmega. Ce dernier point nous conduit à étudier le problème de complétion de données qui consiste à retrouver les conditions de bord sur une région inaccessible, i.e. sur thetaOmega\Gammaobs, à partir des données de Cauchy sur la région accessible Gammaobs. Ce problème inverse est également étudié en minimisant une fonctionnelle de type Kohn-Vogelius. La caractère mal posé de ce problème nous amène à régulariser la fonctionnelle via une régularisation de Tikhonov. Nous obtenons plusieurs propriétés théoriques comme des propriétés de convergence, en particulier lorsque les données sont bruitées. En tenant compte de ces résultats théoriques, nous reconstruisons numériquement les données de bord en mettant en oeuvre un algorithme de gradient afin de minimiser la fonctionnelle régularisée. Nous étudions ensuite le problème de détection d'obstacle lorsque seule une mesure de bord partielle est disponible. Nous considérons alors les conditions de bord inaccessibles et l'objet inconnu comme les variables de la fonctionnelle et ainsi, en utilisant des méthodes d'optimisation de forme géométrique, en particulier le gradient de forme de la fonctionnelle de Kohn-Vogelius, nous obtenons la reconstruction numérique de l'inclusion inconnue. Enfin, nous considérons, dans le cas vectoriel bi-dimensionnel, un nouveau degré de liberté en étudiant le cas où le nombre d'objets est inconnu. Ainsi, nous utilisons l'optimisation de forme topologique afin de minimiser la fonctionnelle de Kohn-Vogelius. Nous obtenons le développement asymptotique topologique de la solution des équations de Stokes 2D et caractérisons le gradient topologique de cette fonctionnelle. Nous déterminons alors numériquement le nombre d'obstacles ainsi que leur position. De plus, nous proposons un algorithme qui combine les méthodes d'optimisation de forme topologique et géométrique afin de déterminer numériquement le nombre d'obstacles, leur position ainsi que leur forme.

Sous la direction du :
Directeur de thèse
Conca Rosende, Carlos
Caubet, Fabien
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Mathématiques de Toulouse (IMT), UMR 5219
Mots-clés libres :Problème inverse géométrique - Optimisation de forme - Problème de complétion de données - Analyse de la sensibilité topologique - Gradient topologique - Gradient de forme - Fonctionnelle de Kohn-Vogelius - Équation de Laplace - Équations de Stokes
Sujets :Mathématiques
Déposé le :10 Mar 2017 13:32