LogoLogo

Essghaier, Fatma. Collective decision making under qualitative possibilistic uncertainty: principles and characterization

Essghaier, Fatma (2016). Collective decision making under qualitative possibilistic uncertainty: principles and characterization.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
3555Kb

Résumé en francais

Cette Thèse pose la question de la décision collective sous incertitude possibiliste. On propose différents règles de décision collective qualitative et on montre que dans un contexte possibiliste, l'utilisation d'une fonction d'agrégation collective pessimiste égalitariste ne souffre pas du problème du Timing Effect. On étend ensuite les travaux de Dubois et Prade (1995, 1998) relatifs à l'axiomatisation des règles de décision qualitatives (l'utilité pessimiste) au cadre de décision collective et montre que si la décision collective comme les décisions individuelles satisfont les axiomes de Dubois et Prade ainsi que certains axiomes relatifs à la décision collective, particulièrement l'axiome de Pareto unanimité, alors l'agrégation collective égalitariste s'impose. Le tableau est ensuite complété par une axiomatisation d'un pendant optimiste de cette règle de décision collective. Le système axiomatique que nous avons développé peut être vu comme un pendant ordinal du théorème de Harsanyi (1955). Ce résultat á été démontré selon un formalisme qui et basé sur le modèle de de Von NeuMann and Morgenstern (1948) et permet de comparer des loteries possibilistes. Par ailleurs, on propose une première tentative pour la caractérisation des règles de décision collectives qualitatives selon le formalisme de Savage (1972) qui offre une représentation des décisions par des actes au lieu des loteries. De point de vue algorithmique, on considère l'optimisation des stratégies dans les arbres de décision possibilistes en utilisant les critères de décision caractérisés dans la première partie de ce travail. On offre une adaptation de l'algorithme de Programmation Dynamique pour les critères monotones et on propose un algorithme de Programmation Multi-dynamique et un algorithme de Branch and Bound pour les critères qui ne satisfont pas la monotonie. Finalement, on établit une comparaison empirique des différents algorithmes proposés. On mesure les CPU temps d'exécution qui augmentent linéairement en fonction de la taille de l'arbre mais restent abordable même pour des grands arbres. Ensuite, nous étudions le pourcentage d'exactitude de l'approximation des algorithmes exacts par Programmation Dynamique: Il apparaît que pour le critère U-max ante l'approximation de l'algorithme de Programmation Multi-dynamique n'est pas bonne. Mais, ceci n'est pas si dramatique puisque cet algorithme est polynomial (et efficace dans la pratique). Cependant, pour la règle U+min ante l'approximation par Programmation Dynamique est bonne et on peut dire qu'il devrait être possible d'éviter une énumération complète par Branch and Bound pour obtenir les stratégies optimales.

Sous la direction du :
Directeur de thèse
Fargier, Hélène
Ben Amor, Nahla
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Recherche en Informatique de Toulouse (IRIT), UMR 5505
Mots-clés libres :Théorie de décision - Théorie de possibilité - Axiomatisation - Choix collectif - Arbres de décision
Sujets :Informatique
Déposé le :17 Mar 2017 10:40