LogoLogo

Eloy, Anton. Classification et géométrie des équations aux q-différences : étude globale de q-Painlevé, classification non isoformelle et Stokes à pentes arbitraires

Eloy, Anton (2016). Classification et géométrie des équations aux q-différences : étude globale de q-Painlevé, classification non isoformelle et Stokes à pentes arbitraires.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
1744Kb

Résumé en francais

Cette thèse s'intéresse à la classification géométrique, locale et globale, des équations aux q-différences. Dans un premier temps nous réalisons une étude globale de certains systèmes dérivés des équations de q-Painlevé et introduits par Murata, en proposant une correspondance de Riemann-Hilbert-Birkhoff entre de tels systèmes et leurs matrices de connexion. Dans un second temps nous nous intéressons à la classification locale, en construisant un fibré vectoriel équivariant sur l'espace des classes formelles à deux pentes dont la fibre au dessus d'une classe formelle est l'espace de ses classes analytiques isoformelles. Ceci fait, voyant que l'action du groupe des automorphismes du gradué s'impose naturellement dans l'étude de ce fibré, nous nous intéressons à l'espace des classes analytiques, soit des classes analytiques isoformelles modulo cette action, dont nous proposons dans un cas restreint une première approche de classification via l'utilisation de variétés toriques. Dans un troisième temps nous construisons, via des transformations de q-Borel et de q-Laplace, des q-Stokes, soit des solutions méromorphes de systèmes, dans le cadre des systèmes à deux pentes dont une non entière et une nulle.

Sous la direction du :
Directeur de thèse
Sauloy, Jacques
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Mathématiques de Toulouse (IMT), UMR 5219
Mots-clés libres :Equations aux q-différences - Classification analytique - Phénomène de Stokes - Géométrie des q-différences - Q-Borel-Laplace - Equivalence de Riemann-Hilbert-Birkhoff - Q-Painlevé - Variétés toriques
Sujets :Mathématiques
Déposé le :10 Apr 2017 14:24