LogoLogo

Barbosa Roa, Nathalie Andrea. A data-based approach for dynamic classification of functional scenarios oriented to industrial process plants

Barbosa Roa, Nathalie Andrea (2016). A data-based approach for dynamic classification of functional scenarios oriented to industrial process plants.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
7Mb

Résumé en francais

L'objectif principal de cette thèse est de développer un algorithme dynamique de partitionnement de données (classification non supervisée ou " clustering " en anglais) qui ne se limite pas à des concepts statiques et qui peut gérer des distributions qui évoluent au fil du temps. Cet algorithme peut être utilisé dans les systèmes de surveillance du processus, mais son application ne se limite pas à ceux-ci. Les contributions de cette thèse peuvent être présentées en trois groupes: 1. Contributions au partitionnement dynamique de données en utilisant : un algorithme de partitionnement dynamique basé à la fois sur la distance et la densité des échantillons est présenté. Cet algorithme ne fait aucune hypothèse sur la linéarité ni la convexité des groupes qu'il analyse. Ces clusters, qui peuvent avoir des densités différentes, peuvent également se chevaucher. L'algorithme développé fonctionne en ligne et fusionne les étapes d'apprentissage et de reconnaissance, ce qui permet de détecter et de caractériser de nouveaux comportements en continu tout en reconnaissant l'état courant du système. 2. Contributions à l'extraction de caractéristiques : une nouvelle approche permettant d'extraire des caractéristiques dynamiques est présentée. Cette approche, basée sur une approximation polynomiale par morceaux, permet de représenter des comportements dynamiques sans perdre les informations relatives à la magnitude et en réduisant simultanément la sensibilité de l'algorithme au bruit dans les signaux analysés. 3. Contributions à la modélisation de systèmes à événements discrets évolutifs a partir des résultats du clustering : les résultats de l'algorithme de partitionnement sont utilisés comme base pour l'élaboration d'un modèle à événements discrets du processus. Ce modèle adaptatif offre une représentation du comportement du processus de haut niveau sous la forme d'un automate dont les états représentent les états du processus appris par le partitionnement jusqu'à l'instant courant et les transitions expriment l'atteignabilité des états.

Sous la direction du :
Directeur de thèse
Travé-Massuyès, Louise
Grisales Palacio, Victor Hugo
Ecole doctorale:Systèmes
laboratoire/Unité de recherche :Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS) - CNRS
Mots-clés libres :Dynamic clustering - System tracking - Fault diagnosis - Machine learning - Monitoring - DES learning - Pattern recognition
Sujets :Electricite, électronique, automatique
Déposé le :14 Apr 2017 13:35