LogoLogo

Huou, Benoit. Inégalités isopérimétriques produit pour les élargissements euclidien et uniforme : symétrisation et inégalités fonctionnelles

Huou, Benoit (2016). Inégalités isopérimétriques produit pour les élargissements euclidien et uniforme : symétrisation et inégalités fonctionnelles.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
1386Kb

Résumé en francais

Le problème isopérimétrique consiste, dans un espace métrique mesuré, à trouver les ensembles qui, à volume fixé, ont la plus petite mesure de surface. Il peut être formulé dans de nombreux cadres (espaces métriques mesurés généraux, variétés riemanniennes à poids, parties de l'espace euclidien...). Deux questions se dégagent de ce problème : - Quels sont les ensembles solutions, c'est-à-dire ayant la plus petite mesure de surface ? (Il faut noter que ces ensembles n'existent pas toujours). - Que vaut la plus petite mesure de surface ? La solution à la deuxième question peut être formulée sous la forme d'une fonction, appelée profil isopérimétrique, qui, à une valeur de volume (pondéré) donnée, associe la plus petite mesure de surface correspondante. La notion de mesure de surface, quant à elle, peut être définie de plusieurs manières (contenu de Minkowski, périmètre géométrique...), toutes dépendant étroitement à la fois de la distance et de la mesure ambiantes. L'objet principal de cette thèse est l'étude du problème isopérimétrique dans des espaces produits, que ce soit pour transférer des inégalités isopérimétriques d'espaces facteurs vers ces produits, ou pour comparer le profil isopérimétrique de l'espace produit à ceux des facteurs. La thèse se découpe en quatre parties : - Étude de l'opération de symétrisation (pour les ensembles) et de réarrangement (pour les fonctions), notions analogues, du point de vue de la théorie de la mesure géométrique et des fonctions à variations bornée. Ces opérations agissent de sorte à ce que n'augmente pas la mesure de surface (pour les ensembles), ou la variation (pour les fonctions). Nous introduisons notamment une nouvelle classe d'espaces modèles, pour lesquels nous obtenons des résultats qualitativement similaires à ceux obtenus pour les espaces modèles classiques : inégalités isopérimétriques transférées aux produits, comparaison d'énergies (pour des fonctionnelles convexes). - Détail d'un argument de minoration du profil isopérimétrique d'un espace métrique produit XxY par une fonction dépendant des profils de X et Y, pour une large classe de distances produits sur XxY. L'étude de ce problème est faite via la minimisation d'une fonctionnelle sur la classe des mesures de Radon. - Étude du problème isopérimétrique dans un espace métrique mesuré produit (le produit d'ordre quelconque du même espace métrique mesuré), muni de la combinaison uniforme de sa distance (élargissement uniforme). Nous donnons un critère pour que tous les profils isopérimétriques (quel que soit l'ordre d'itération du produit) soient minorés par un multiple du minorant du profil isopérimétrique de l'espace originel. Ceci est fait en utilisant notamment des méthodes ayant trait aux inégalités fonctionnelles. Nous appliquons ensuite les résultats aux influences géométriques. - Étude d'inégalités fonctionnelles dites isopérimétriques, permettant d'appréhender le comportement isopérimétrique dans l'espace produit correspondant d'ordre quelconque. Nous résumons l'état des connaissances à propos des inégalités de ce type et proposons une autre méthode qui pourrait aboutir à prouver une telle inégalité dans le cas de mesures réelles particulières, pour lesquelles le problème est ouvert.

Sous la direction du :
Directeur de thèse
Barthe, Franck
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Mathématiques de Toulouse (IMT), UMR 5219
Mots-clés libres :Isopérimétrie - Théorie géométrique de la mesure - Analyse fonctionnelle - Inégalités fonctionnelles - Symétrisation - Espaces métriques mesurés
Sujets :Mathématiques
Déposé le :18 Apr 2017 17:46