LogoLogo

Snisarenko, Dmytro. Medium sized molecules clearance through artificial kidneys

Snisarenko, Dmytro (2016). Medium sized molecules clearance through artificial kidneys.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
4Mb

Résumé en francais

Malgré une longue histoire de développement, l'hémodialyse (rein artificiel) possède encore quelques limitations, telles que la perte des propriétés initiales de la membrane en cours de traitement à cause du colmatage et la mauvaise élimination des toxines urémiques de taille moyenne. La présente étude fait partie d'un projet européen nommé BioArt dont le but est d'apporter des solutions à ces limites. Dans cet objectif, l'un des partenaires du projet a proposé le développement d'un nouveau concept de membrane double couche au sein de laquelle sont incorporées des particules adsorbantes. Une caractérisation complète de cette nouvelle membrane était alors nécessaire, plus précisément l'impact de la matrice mixte sur l'élimination des toxines urémiques de divers groupes devait être évalué, ainsi que la propension du matériau membranaire à se colmater. Les études des phénomènes de colmatage sont classiquement menées à l'échelle macroscopique (faisceau de fibres creuses) sans analyse à l'échelle d'une fibre isolée. Le but premier de la présente thèse a alors été de proposer un dispositif permettant une étude du colmatage membranaire induit par la protéine à l'échelle microscopique. Un dispositif microfluidique transparent dans lequel la membrane polymère est insérée a été élaboré et mis en œuvre pour la filtration des protéines modèles : l'albumine de sérum bovin (BSA) et l'a-lactalbumine. Grâce au couplage avec la microscopie de fluorescence, différents modes d'adsorption des protéines sur la surface de la membrane ont été observés et liés aux variations des conditions hydrodynamiques à l'intérieur de la puce. Il a été constaté, sous certaines conditions, une différence dans l'accumulation de protéines entre l'entrée, le centre et la sortie du canal tandis que dans d'autres conditions cet effet s'annule. En outre, un phénomène inattendu, l'agrégation de l'a-lactalbumine, a été observé au cours de la filtration. La localisation dans le canal et la forme des agrégats dépendent également des conditions hydrodynamiques et de la pression transmembranaire appliquée. Dans le but d'optimiser la conception de la membrane vis à vis de son aptitude à éliminer des molécules de taille moyenne de la circulation sanguine, un modèle mathématique a été proposé. L'objectif du modèle était, en prenant en compte la présence de particules adsorbantes à l'intérieur de la membrane double couche, de rendre compte de la combinaison des trois mécanismes d'élimination du soluté : la convection, la diffusion et l'adsorption. Le modèle permet de prédire l'influence de divers paramètres tels que la diffusivité de la molécule, l'épaisseur de la membrane, la présence de la convection, la charge en particules adsorbantes, sur l'intensification des flux à travers la membrane. Le modèle semble être un outil utile pouvant être appliqué à l'optimisation de membranes pour l'élimination des toxines.

Sous la direction du :
Directeur de thèse
Causserand, Christel
Ecole doctorale:Mécanique, énergétique, génie civil, procédés (MEGeP)
laboratoire/Unité de recherche :Laboratoire de Génie Chimique (LGC), UMR 5503
Mots-clés libres :Hémodialyse - Dispositif microfluidique - Colmatage de la membrane - L'adsorption de la protéine - Modèle de transfert de la masse.
Sujets :Sciences des matériaux
Déposé le :23 May 2017 08:42