LogoLogo

Allain, Guillaume. Prévision et analyse du trafic routier par des méthodes statistiques

Allain, Guillaume (2008). Prévision et analyse du trafic routier par des méthodes statistiques.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
2145Kb

Résumé en francais

La société Mediamobile édite et diffuse de l'information sur le trafic aux usagers. L'objectif de ce travail est l'enrichissement de cette information par la prévision et la complétion des conditions de route. Notre approche s'inspire parfois de la modélisation physique du trafic routier mais fait surtout appel à des méthodes statistiques afin de proposer des solutions automatisables, modulaires et adaptées aux contraintes industrielles. Dans un premier temps, nous décrivons une méthode de prévision de la vitesse de quelques minutes à plusieurs heures. Nous supposons qu'il existe un nombre fini de comportements types du trafic sur le réseau, dus aux déplacements périodiques des usagers. Nous faisons alors l'hypothèse que les courbes de vitesses observées en chaque point du réseau sont issues d'un modèle de mélange. Nous cherchons ensuite à améliorer cette méthode générale de prévision. La prévision à moyen terme fait appel à des variables bâties sur le calendrier. Nous retenons le modèle de mélange des courbes de vitesse et nous proposons également des modèles de régression fonctionnelle pour les courbes de vitesses. Ensuite nous proposons une modélisation par régression locale afin de capturer la dynamique physique du trafic à très court terme. Nous estimons la fonction de noyau à partir des observations du phénomène en intégrant des connaissances a priori sur la dynamique du trafic. La dernière partie est dédiée à l'analyse des vitesses issues de véhicules traceurs. Ces vitesses sont irrégulièrement observées en temps et en espace sur un axe routier. Nous proposons un modèle de régression locale à l'aide de polynômes locaux pour compléter et lisser ces données.

Sous la direction du :
Directeur de thèse
Gamboa, Fabrice
Loubes, Jean-Michel
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Mathématiques de Toulouse (IMT), UMR 5219
Mots-clés libres :Trafic routier - Apprentissage statistique - Données fonctionnelles - Sélection de modèles - Régularisation - Classification non-supervisée
Sujets :Mathématiques
Déposé le :13 Mar 2009 15:12