LogoLogo

Bonnet, Jonathan. Multi-criteria and multi-objective dynamic planning by self-adaptive multi-agent system, application to earth observation satellite constellations

Bonnet, Jonathan (2017). Multi-criteria and multi-objective dynamic planning by self-adaptive multi-agent system, application to earth observation satellite constellations.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
3874Kb

Résumé en francais

Etablir le meilleur plan pour l'usinage d'un produit, le meilleur ordonnancement des activités de construction d'un bâtiment ou la meilleure tournée de véhicules pour la livraison des commandes, en prenant en compte diverses contraintes économiques, temporelles, humaines, ou même météorologiques : dans cette diversité d'applications, optimiser la planification est une tâche complexe par le grand nombre d'entités hétérogènes en interaction, la forte dynamique, les objectifs contradictoires à atteindre, etc. La planification de missions pour des constellations de satellites en est un exemple majeur : beaucoup de paramètres et de contraintes, souvent antagonistes, doivent être pris en compte, entraînant une importante combinatoire. Actuellement, en Europe, les plans de missions sont élaborés au sol, juste avant que le satellite ne soit visible par la station d'émission. Les requêtes arrivant durant la planification ne peuvent être traitées, et sont mises en attente. De plus, la complexité de ce problème croit drastiquement : le nombre de constellations et les satellites les composant augmentent, ainsi que le nombre de requêtes journalières. Les approches actuelles montrent leurs limites. Pour pallier à ces inconvénients, de nouveaux systèmes basés sur la décentralisation et la distribution inhérentes à ce genre de problèmes, sont nécessaires. La théorie des systèmes multi-agents adaptatifs (AMAS) et notamment le modèle AMAS4Opt (AMAS for Optimisation) ont montré leur adéquation pour la résolution de problèmes d'optimisation complexes sous contraintes. Le comportement local et coopératif des agents AMAS permet au système de s'auto-adapter à la forte dynamique et de fournir des solutions adéquates rapidement. Dans cette thèse, nous adressons la résolution de la planification des missions de satellites par AMAS. Pour cela, nous avons complété et enrichi les modèles d'agents proposés par AMAS4Opt. Nous avons ainsi développé le système de planification dynamique de missions ATLAS. Pour valider ATLAS sur divers critères, nous avons utilisé un grand nombre de données hétérogènes. Enfin, ce travail a été comparé à un système " opérationnel' " standard sur des scénarios réels, mettant en valeur les apports de notre système.

Sous la direction du :
Directeur de thèse
Gleizes, Marie-Pierre
Kaddoum, Elsy
Rainjonneau, Serge
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Recherche en Informatique de Toulouse (IRIT), UMR 5505
Mots-clés libres :Systèmes multi-agent adaptatifs - Planification - Optimisation - Satellites
Sujets :Informatique
Déposé le :22 Aug 2017 09:39