LogoLogo

Savel, Marc. Analyse et contrôle de modèles d'écoulements fluides

Savel, Marc (2017). Analyse et contrôle de modèles d'écoulements fluides.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
1584Kb

Résumé en francais

Dans cette thèse, nous étudions le caractère bien posé, le contrôle et la stabilisation de quelques modèles d'écoulements fluides. Dans la première partie, on s'intéresse aux équations de Navier-Stokes compressibles 1D. Un résultat de contrôlabilité locale aux trajectoires par contrôle frontière est établi sous l'hypothèse géométrique de vidage du domaine par le flot de la trajectoire cible. La principale nouveauté de ce travail est que les trajectoires cibles peuvent être choisies non constantes. Dans la deuxième partie, nous travaillons sur un modèle de frontière immergée dans un fluide visqueux incompressible en 2D et 3D. Contrairement à la méthode des frontières immergées de Peskin où la force générée par la structure dépend de ses propriétés élastiques et géométriques, nous considérons que la force de la structure est une donnée du système. Nous montrons alors des résultats d'existence locale en temps et en tout temps à données petites de solutions fortes. Ce travail est un premier pas vers l'analyse mathématique de la méthode des frontières immergées de Peskin. Dans la dernière partie, nous étudions la stabilisation d'une interface entre deux couches de fluides visqueux non miscibles soumis à l'effet de tension de surface en 2D et 3D. Nous montrons qu'au moyen d'un contrôle de dimension finie agissant sur une partie de la frontière d'un seul des deux fluides, le système est exponentiellement stabilisable à tout taux de décroissance autour de la configuration plate avec fluides au repos. Ce travail est une première étape dans l'étude de la stabilisation des instabilités de Rayleigh-Taylor.

Sous la direction du :
Directeur de thèse
Ervedoza, Sylvain
Raymond, Jean-Pierre
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Mathématiques de Toulouse (IMT), UMR 5219
Mots-clés libres :Equations de Navier-Stokes - Frontières immergées - Tension de surface - Contrôlabilité locale aux trajectoires - Stabilisation d'interface fluide
Sujets :Mathématiques
Déposé le :12 Sep 2017 15:22