LogoLogo

Guyez, Barbara. Exploration du microbiote d'invertébrés par métagénomique fonctionnelle et caractérisation structure-fonction d'une nouvelle xylanase

Guyez, Barbara (2016). Exploration du microbiote d'invertébrés par métagénomique fonctionnelle et caractérisation structure-fonction d'une nouvelle xylanase.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
7Mb

Résumé en francais

La paroi végétale est une structure complexe composée principalement de polysaccharides (cellulose, hémicellulose et pectine), de lignine et de protéines. Elle est impliquée dans de nombreuses fonctions essentielles à la vie de la cellule végétale. De plus, les constituants de cette paroi, que sont les polysaccharides et la lignine, représentent la plus grande source de carbone renouvelable de la planète. Ceci en fait des cibles de choix notamment pour la production d'énergies « vertes ». Toutefois, l'utilisation des polysaccharides tels que les hémicelluloses constituant la paroi végétale reste, à l'heure actuelle, limitée du fait de la difficulté à les dégrader. Ces dernières années, un effort important a été mis en œuvre pour identifier et caractériser de nouvelles enzymes, telles que les glycosides hydrolases, permettant de dégrader efficacement la biomasse végétale. Dans le but de découvrir de nouvelles enzymes impliquées dans la dégradation de la biomasse végétale, des chercheurs de l'équipe « Catalyse et Ingénierie Moléculaire Enzymatiques » du LISBP ont décidé d'explorer le métagénome d'organismes connus pour dégrader la biomasse végétale. Deux espèces animales ont fait l'objet d'analyses : tout d'abord les termites qui sont considérés comme les champions de la dégradation de la biomasse végétales et souvent comparés à des bioréacteurs, et le ver de terre. Des banques métagénomiques de trois espèces différentes de termites ainsi qu'une banque métagénomique de ver de terre ont ainsi été créées. Dans ces travaux de thèse deux des banques métagénomiques de termites, celle de Nasutitermes corniger et celle de Termes hispaniolae, ont fait l'objet d'une étude afin de comparer le potentiel hémicellulolytique de ces deux espèces. Après sélection de nombreux clones positifs sur substrats chromogéniques de chacune des deux banques, séquençage puis annotation taxonomique et fonctionnelle, un grand nombre d'enzymes et principalement des glycosides hydrolases, a pu être identifié. Les résultats montrent que le métagénome de Nasutitermes corniger présente majoritairement des enzymes à activité endoglycosidase alors que le métagenome de Termes hispaniolae possède plutôt des enzymes à activité exoglycosidase. Toutes les activités trouvées dans chacune des espèces de termite sont en bonne corrélation avec l'alimentation du termite. De plus, nous avons observé que le microbiote intestinal des deux termites ne possèdent pas les mêmes embranchements bactériens majoritaires et nous avons pu voir que le microbiote de Termes hispaniolae est plus diversifié ce qui corrèle aussi avec l'alimentation des deux termites. D'autre part, dans la banque métagénomique du ver de terre, l'annotation fonctionnelle a révélé une enzyme intéressante. Il s'agit d'une enzyme annotée par B. Henrissat (responsable de la base de données CAZy) comme étant une glycoside hydrolase putative mais n'appartenant à aucune des 135 familles de glycosides hydrolases existantes. Cette enzyme putative, appelée GH* présente des similitudes avec les GH de la famille 5 sans pour autant appartenir à cette famille du fait notamment de l'absence du résidu catalytique nucléophile conservé. Une étude structurale et fonctionnelle de GH* a donc été menée. Les expériences ont permis de prouver que GH* est une endo-xylanase ayant une préférence pour les arabinoxylanes et les xylooligosaccharides de degré de polymérisation d'au moins 5 ou 6. La structure tridimensionnelle de GH* à 1,6Å de résolution a été obtenue par cristallographie des rayons X par remplacement moléculaire à l'aide d'une GH5. Cette structure a permis de confirmer l'identité du résidu acide/base identifié par alignement de séquences et d'émettre une hypothèse sur l'identité du résidu nucléophile. Enfin des mutants de GH* pour ces deux résidus ont été obtenus et ont confirmé leur implication dans l'activité de l'enzyme.

Sous la direction du :
Directeur de thèse
Dumon, Claire
Tranier, Samuel
Ecole doctorale:Biologie, santé, biotechnologies (BSB)
laboratoire/Unité de recherche :Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089 ; Laboratoire d’Ingénierie des Laboratoire Systèmes Biologiques et des Procédés (LISBP), UMR 792
Mots-clés libres :Métagénomique fonctionnelle - Microbiotes de termites - Glycoside hydrolases - Polysaccharides - Relation structure-fonction
Sujets :Sciences du vivant
Déposé le :26 Sep 2017 12:51