LogoLogo

Brunet, Anne-Claire. Développement d'outils statistiques pour l'analyse de données transcriptomiques par les réseaux de co-expression de gènes

Brunet, Anne-Claire (2016). Développement d'outils statistiques pour l'analyse de données transcriptomiques par les réseaux de co-expression de gènes.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
3858Kb

Résumé en francais

Les nouvelles biotechnologies offrent aujourd'hui la possibilité de récolter une très grande variété et quantité de données biologiques (génomique, protéomique, métagénomique...), ouvrant ainsi de nouvelles perspectives de recherche pour la compréhension des processus biologiques. Dans cette thèse, nous nous sommes plus spécifiquement intéressés aux données transcriptomiques, celles-ci caractérisant l'activité ou le niveau d'expression de plusieurs dizaines de milliers de gènes dans une cellule donnée. L'objectif était alors de proposer des outils statistiques adaptés pour analyser ce type de données qui pose des problèmes de "grande dimension" (n<<p), car collectées sur des échantillons de tailles très limitées au regard du très grand nombre de variables (ici l'expression des gènes).La première partie de la thèse est consacrée à la présentation de méthodes d'apprentissage supervisé, telles que les forêts aléatoires de Breiman et les modèles de régressions pénalisées, utilisées dans le contexte de la grande dimension pour sélectionner les gènes (variables d'expression) qui sont les plus pertinents pour l'étude de la pathologie d'intérêt. Nous évoquons les limites de ces méthodes pour la sélection de gènes qui soient pertinents, non pas uniquement pour des considérations d'ordre statistique, mais qui le soient également sur le plan biologique, et notamment pour les sélections au sein des groupes de variables fortement corrélées, c'est à dire au sein des groupes de gènes co-exprimés. Les méthodes d'apprentissage classiques considèrent que chaque gène peut avoir une action isolée dans le modèle, ce qui est en pratique peu réaliste. Un caractère biologique observable est la résultante d'un ensemble de réactions au sein d'un système complexe faisant interagir les gènes les uns avec les autres, et les gènes impliqués dans une même fonction biologique ont tendance à être co-exprimés (expression corrélée). Ainsi, dans une deuxième partie, nous nous intéressons aux réseaux de co-expression de gènes sur lesquels deux gènes sont reliés si ils sont co-exprimés. Plus précisément, nous cherchons à mettre en évidence des communautés de gènes sur ces réseaux, c'est à dire des groupes de gènes co-exprimés, puis à sélectionner les communautés les plus pertinentes pour l'étude de la pathologie, ainsi que les "gènes clés" de ces communautés. Cela favorise les interprétations biologiques, car il est souvent possible d'associer une fonction biologique à une communauté de gènes. Nous proposons une approche originale et efficace permettant de traiter simultanément la problématique de la modélisation du réseau de co-expression de gènes et celle de la détection des communautés de gènes sur le réseau. Nous mettons en avant les performances de notre approche en la comparant à des méthodes existantes et populaires pour l'analyse des réseaux de co-expression de gènes (WGCNA et méthodes spectrales). Enfin, par l'analyse d'un jeu de données réelles, nous montrons dans la dernière partie de la thèse que l'approche que nous proposons permet d'obtenir des résultats convaincants sur le plan biologique, plus propices aux interprétations et plus robustes que ceux obtenus avec les méthodes d'apprentissage supervisé classiques.

Sous la direction du :
Directeur de thèse
Azaïs, Jean-Marc
Loubes, Jean-Michel
Amar, Jacques
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Mathématiques de Toulouse (IMT), UMR 5219 ; VAIOMER
Mots-clés libres :Transcriptomic data - Co-expression network - Variable selection - Dimensionality reduction - Penalized regression - Network clustering - Machine learning
Sujets :Mathématiques
Déposé le :13 Dec 2017 12:58