LogoLogo

Nugroho, Dwiyoga. La marée dans un modèle de circulation générale dans les mers indonésiennes

Nugroho, Dwiyoga (2017). La marée dans un modèle de circulation générale dans les mers indonésiennes.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
5Mb

Résumé en francais

Les mers Indonésiennes sont le siège de très fort courants de marée qui interagissent avec la topographie pour créer des ondes internes à la fréquence de la marée que l'on appelle marée interne. Certaines d'entres elles, vont se propager et se dissiper dans l'océan intérieur. Le mélange associé provoque la remontée d'eau plus froide et plus riche en nutriments en surface qui influence le climat tropical et toute la chaine des écosystèmes marins. Surveiller les ressources marines est l'objectif du projet INDESO, dont cette thèse fait partie. Prendre en compte le mélange induit par la marée interne n'est pas facile. En effet, le résoudre entièrement n'est pas possible car les échelles concernées par les différents processus des ondes internes varient de plusieurs milliers de kilomètres (propagation) à quelques centimètres/millimètres (dissipation). De plus en plus de scientifiques introduisent le forçage de la marée dans leur modèle mais sans savoir où va l'énergie et comment les ondes sont dissipées. Dans cette thèse nous cherchons à proposer des outils et des débuts de réponses pour participer à cette meilleure compréhension de la dissipation des ondes internes dans le modèle numérique d'océan NEMO. Nous proposons certaines quantifications que nous comparons aux anciennes paramétrisations. J'ai, tout d'abord, contribué à une étude d'INDESO sur la validation de NEMO grâce à de nombreux jeu de données. Ensuite, j'ai cherché à quantifier et à qualifier le mélange induit par l'introduction de la marée explicite dans le modèle, ainsi que son impact sur les masses d'eau. (c'est redit plus loin)Il produit un refroidissement de surface de 0.3°C avec des maxima atteignant 0.8°C au niveau des sites de génération des ondes internes. Le modèle reproduit 75% de l'énergie attendue de génération des ondes internes, en bon accord avec des études précédentes. L'essentiel de la dissipation a lieu horizontalement (19GW) est proche de celle induite par la paramétrisation couramment utilisée (16GW), alors que, dans la réalité, on s'attend principalement à une dissipation réalisée grâce à des processus verticaux. Le modèle, au dessus des zones de génération, est de façon surprenante en très bon accord avec les mesures in situ de dissipation obtenues lors de la campagne INDOMIX. Par contre, dans les régions distantes des sources de génération, le modèle surestime le mélange par rapport aux observations d'INDOMIX. Dans la dernière partie de cette thèse j'ai commencé à apporter des éléments de réponse à la quantification des puits d'énergie dans NEMO. J'ai pour cela travaillé avec le cas test COMODO, qui est une section d'un fluide stratifié constituée d'une plaine abyssale, d'un talus et d'un plateau, forcée par la marée et sans friction de fond. Le modèle T-UGOm, un modèle hydrodynamique de marée, est comparé au modèle NEMO. Dans ce cadre, nous avons développé une méthode originale pour séparer la marée barotrope de la marée barocline. Elle repose sur la projection en modes normaux. Cette méthode donne, à première vue, des résultats similaires à ceux obtenus grâce à la méthode plus classique de soustraction par la moyenne verticale. Cependant, lorsque l'on regarde plus en détail les diagnostiques d'énergie on trouve que la méthode de projection en modes normaux offre une plus grande précision et un plus grand réalisme pour séparer la marée barotrope de la marée barocline. Plus on monte dans des modes élevés plus les longueurs ondes se raccourcissent dans NEMO par rapport à T-UGOm. Par ailleurs, NEMO dissipe la marée barotrope dans la plaine abyssale, alors qu'il n'y a explicitement pas de friction. Ce ne peut pas être la diffusion verticael ou horizontale qui est à l'œuvre ici, car il n'y a pas de raison physique pour une diffusion sur un fond plat. Le meilleur candidat pour expliquer cette diffusion serait le couplage 2D/3D du time splitting de NEMO. Un travail est en cours pour appliquer cette méthode sur l'ensemble de l'archipel Indonésien.

Sous la direction du :
Directeur de thèse
Koch-Larrouy, Ariane
Lyard, Florent
Gaspar, Philippe
Ecole doctorale:Sciences de l'Univers, de l'environnement et de l'espace (SDU2E)
laboratoire/Unité de recherche :Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), UMR 5566
Mots-clés libres :INDESO - Marée interne - Mélange - NEMO - Transformation de masses d'eau - Modes normaux
Sujets :Sciences de l'environnement
Déposé le :11 Jan 2018 11:21