LogoLogo

Kacem Sahraoui, Ameni. Personalized information retrieval based on time-sensitive user profile

Kacem Sahraoui, Ameni (2017). Personalized information retrieval based on time-sensitive user profile.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
3703Kb

Résumé en francais

Les moteurs de recherche, largement utilisés dans différents domaines, sont devenus la principale source d'information pour de nombreux utilisateurs. Cependant, les Systèmes de Recherche d'Information (SRI) font face à de nouveaux défis liés à la croissance et à la diversité des données disponibles. Un SRI analyse la requête soumise par l'utilisateur et explore des collections de données de nature non structurée ou semi-structurée (par exemple : texte, image, vidéo, page Web, etc.) afin de fournir des résultats qui correspondent le mieux à son intention et ses intérêts. Afin d'atteindre cet objectif, au lieu de prendre en considération l'appariement requête-document uniquement, les SRI s'intéressent aussi au contexte de l'utilisateur. En effet, le profil utilisateur a été considéré dans la littérature comme l'élément contextuel le plus important permettant d'améliorer la pertinence de la recherche. Il est intégré dans le processus de recherche d'information afin d'améliorer l'expérience utilisateur en recherchant des informations spécifiques. Comme le facteur temps a gagné beaucoup d'importance ces dernières années, la dynamique temporelle est introduite pour étudier l'évolution du profil utilisateur qui consiste principalement à saisir les changements du comportement, des intérêts et des préférences de l'utilisateur en fonction du temps et à actualiser le profil en conséquence. Les travaux antérieurs ont distingué deux types de profils utilisateurs : les profils à court-terme et ceux à long-terme. Le premier type de profil est limité aux intérêts liés aux activités actuelles de l'utilisateur tandis que le second représente les intérêts persistants de l'utilisateur extraits de ses activités antérieures tout en excluant les intérêts récents. Toutefois, pour les utilisateurs qui ne sont pas très actifs dont les activités sont peu nombreuses et séparées dans le temps, le profil à court-terme peut éliminer des résultats pertinents qui sont davantage liés à leurs intérêts personnels. Pour les utilisateurs qui sont très actifs, l'agrégation des activités récentes sans ignorer les intérêts anciens serait très intéressante parce que ce type de profil est généralement en évolution au fil du temps. Contrairement à ces approches, nous proposons, dans cette thèse, un profil utilisateur générique et sensible au temps qui est implicitement construit comme un vecteur de termes pondérés afin de trouver un compromis en unifiant les intérêts récents et anciens. Les informations du profil utilisateur peuvent être extraites à partir de sources multiples. Parmi les méthodes les plus prometteuses, nous proposons d'utiliser, d'une part, l'historique de recherche, et d'autre part les médias sociaux. En effet, les données de l'historique de recherche peuvent être extraites implicitement sans aucun effort de l'utilisateur et comprennent les requêtes émises, les résultats correspondants, les requêtes reformulées et les données de clics qui ont un potentiel de retour de pertinence/rétroaction. Par ailleurs, la popularité des médias sociaux permet d'en faire une source inestimable de données utilisées par les utilisateurs pour exprimer, partager et marquer comme favori le contenu qui les intéresse. En premier lieu, nous avons modélisé le profil utilisateur utilisateur non seulement en fonction du contenu de ses activités mais aussi de leur fraîcheur en supposant que les termes utilisés récemment dans les activités de l'utilisateur contiennent de nouveaux intérêts, préférences et pensées et doivent être pris en considération plus que les anciens intérêts surtout que de nombreux travaux antérieurs ont prouvé que l'intérêt de l'utilisateur diminue avec le temps. Nous avons modélisé le profil utilisateur sensible au temps en fonction d'un ensemble de données collectées de Twitter (un réseau social et un service de microblogging) et nous l'avons intégré dans le processus de reclassement afin de personnaliser les résultats standards en fonction des intérêts de l'utilisateur.En second lieu, nous avons étudié la dynamique temporelle dans le cadre de la session de recherche où les requêtes récentes soumises par l'utilisateur contiennent des informations supplémentaires permettant de mieux expliquer l'intention de l'utilisateur et prouvant qu'il n'a pas trouvé les informations recherchées à partir des requêtes précédentes.Ainsi, nous avons considéré les interactions récentes et récurrentes au sein d'une session de recherche en donnant plus d'importance aux termes apparus dans les requêtes récentes et leurs résultats cliqués. Nos expérimentations sont basés sur la tâche Session TREC 2013 et la collection ClueWeb12 qui ont montré l'efficacité de notre approche par rapport à celles de l'état de l'art. Au terme de ces différentes contributions et expérimentations, nous prouvons que notre modèle générique de profil utilisateur sensible au temps assure une meilleure performance de personnalisation et aide à analyser le comportement des utilisateurs dans les contextes de session de recherche et de médias sociaux.

Sous la direction du :
Directeur de thèse
Boughanem, Mohand
Faiz, Rim
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Recherche en Informatique de Toulouse (IRIT), UMR 5505
Mots-clés libres :Recherche personnalisée - Session de recherche - Profil utilisateur - Médias sociaux - Fraîcheur - Facteur temporel
Sujets :Informatique
Déposé le :30 Jan 2018 14:35