LogoLogo

Sergeeva, Marina. Sectorisation automatisée de l'espace aérien par algorithme génétique

Sergeeva, Marina (2017). Sectorisation automatisée de l'espace aérien par algorithme génétique.

[img]PDF (Accès restreint. S'adresser à l'accueil de la BU Sciences de Toulouse) - Accès intranet - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
12Mb

Résumé en francais

Avec la croissance continue du trafic aérien et la limitation des ressources, il est nécessaire de réduire la congestion de l'espace aérien. Ces dernières années, un intérêt particulier a été porté au problème de la sectorisation de l'espace aérien.Pour pallier à cette augmentation continue du trafic en Europe, il est nécessaire d'optimiser la gestion du trafic aérien. Une automatisation de la sectorisation de l'espace aérien peut permettre, dans cette optique, d'accroître l'adaptabilité des configurations du secteur aérien à une nouvelle demande de trafic. L'objectif de la première partie de cette thèse est de proposer une méthode globale de sectorisation de l'espace aérien européen en se basant sur une modélisation mathématique et des méthodes d'optimisation heuristiques. La méthode de sectorisation proposée est basée sur la division initiale de l'espace aérien en cellules de Voronoi à l'aide de méthodes des k-moyennes. Pour des raisons de complexité combinatoire induite, un algorithme d'optimisation stochastique est utilisé pour résoudre le problème de sectorisation. Un algorithme génétique est utilisé pour construire les secteurs de l'espace aérien dans plusieurs zones de contrôle européennes, en se basant sur des données réelles de trafic aérien pendant plusieurs jours.De plus, les configurations du secteur de l'espace aérien doivent être adaptées dynamiquement pour offrir une efficacité et une flexibilité maximales en fonction des conditions météorologiques et de circulation. L'objectif de la deuxième partie de cette thèse est d'adapter automatiquement les configurations de l'espace aérien en fonction de l'évolution du trafic, au cours d'une journée de fonctionnement. Pour atteindre cet objectif, il faut considérer que l'espace aérien est divisé en blocs d'espaces aériens 3D qui doivent être groupés ou dégroupés en fonction de l'état du trafic. La méthode proposée est basée sur une technique de partitionnement de graphe et sur des algorithmes génétiques. La méthode est testée sur plusieurs zones de contrôle européennes.

Sous la direction du :
Directeur de thèse
Delahaye, Daniel
Mancel, Catherine
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Laboratoire de Mathématiques Appliquées, Informatique et Automatique pour l'Aérien (MAIAA), ENAC
Mots-clés libres :Optimisation - Algorithme génétique - Métriques de complexité - Sectorisation - Design du secteur - Configuration dynamique de l'espace aérien
Sujets :Mathématiques
Déposé le :07 Feb 2018 09:43