LogoLogo

Delplancke, Claire. Méthodes quantitatives pour l'étude asymptotique de processus de Markov homogènes et non-homogènes

Delplancke, Claire (2017). Méthodes quantitatives pour l'étude asymptotique de processus de Markov homogènes et non-homogènes.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
2189Kb

Résumé en francais

L'objet de cette thèse est l'étude de certaines propriétés analytiques et asymptotiques des processus de Markov, et de leurs applications à la méthode de Stein. Le point de vue considéré consiste à déployer des inégalités fonctionnelles pour majorer la distance entre lois de probabilité. La première partie porte sur l'étude asymptotique de processus de Markov inhomogènes en temps via des inégalités de type Poincaré, établies par l'analyse spectrale fine de l'opérateur de transition. On se place d'abord dans le cadre du théorème central limite, qui affirme que la somme renormalisée de variables aléatoires converge vers la mesure gaussienne, et l'étude est consacrée à l'obtention d'une borne à la Berry-Esseen permettant de quantifier cette convergence. La distance choisie est une quantité naturelle et encore non étudiée dans ce cadre, la distance du chi-2, complétant ainsi la littérature relative à d'autres distances (Kolmogorov, variation totale, Wasserstein). Toujours dans le contexte non-homogène, on s'intéresse ensuite à un processus peu mélangeant relié à un algorithme stochastique de recherche de médiane. Ce processus évolue par sauts de deux types (droite ou gauche), dont la taille et l'intensité dépendent du temps. Une majoration de la distance de Wasserstein d'ordre 1 entre la loi du processus et la mesure gaussienne est établie dans le cas où celle-ci est invariante sous la dynamique considérée, et étendue à des exemples où seule la normalité asymptotique est vérifiée. La seconde partie s'attache à l'étude des entrelacements entre processus de Markov (homogènes) et gradients, qu'on peut interpréter comme un raffinement du critère de Bakry-Emery, et leur application à la méthode de Stein, qui est un ensemble de techniques permettant de majorer la distance entre deux mesures de probabilité. On prouve l'existence de relations d'entrelacement du second ordre pour les processus de naissance-mort, allant ainsi plus loin que les relations du premier ordre connues. Ces relations sont mises à profit pour construire une méthode originale et universelle d'évaluation des facteurs de Stein relatifs aux mesures de probabilité discrètes, qui forment une composante essentielle de la méthode de Stein-Chen.

Sous la direction du :
Directeur de thèse
Joulin, Aldéric
Miclo, Laurent
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Mathématiques de Toulouse (IMT), UMR 5219
Mots-clés libres :Processus de Markov - Processus de naissance-mort - Inégalités fonctionnelles - Inégalités de Berry-Esseen - Algorithmes stochastiques - Méthode de Stein
Sujets :Mathématiques
Déposé le :09 Feb 2018 18:32