LogoLogo

Hug, Nicolas. Contributions to the use of analogical proportions for machine learning: theoretical properties and application to recommendation

Hug, Nicolas (2017). Contributions to the use of analogical proportions for machine learning: theoretical properties and application to recommendation.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
1584Kb

Résumé en francais

Le raisonnement par analogie est reconnu comme une des principales caractéristiques de l'intelligence humaine. En tant que tel, il a pendant longtemps été étudié par les philosophes et les psychologues, mais de récents travaux s'intéressent aussi à sa modélisation d'un point de vue formel à l'aide de proportions analogiques, permettant l'implémentation de programmes informatiques. Nous nous intéressons ici à l'utilisation des proportions analogiques à des fins prédictives, dans un contexte d'apprentissage artificiel. Dans de récents travaux, les classifieurs analogiques ont montré qu'ils sont capables d'obtenir d'excellentes performances sur certains problèmes artificiels, là où d'autres techniques traditionnelles d'apprentissage se montrent beaucoup moins efficaces. Partant de cette observation empirique, cette thèse s'intéresse à deux axes principaux de recherche. Le premier sera de confronter le raisonnement par proportion analogique à des applications pratiques, afin d'étudier la viabilité de l'approche analogique sur des problèmes concrets. Le second axe de recherche sera d'étudier les classifieurs analogiques d'un point de vue théorique, car jusqu'à présent ceux-ci n'étaient connus que grâce à leurs définitions algorithmiques. Les propriétés théoriques qui découleront nous permettront de comprendre plus précisément leurs forces, ainsi que leurs faiblesses. Comme domaine d'application, nous avons choisi celui des systèmes de recommandation. On reproche souvent à ces derniers de manquer de nouveauté ou de surprise dans les recommandations qui sont adressées aux utilisateurs. Le raisonnement par analogie, capable de mettre en relation des objets en apparence différents, nous est apparu comme un outil potentiel pour répondre à ce problème. Nos expériences montreront que les systèmes analogiques ont tendance à produire des recommandations d'une qualité comparable à celle des méthodes existantes, mais que leur complexité algorithmique cubique les pénalise trop fortement pour prétendre à des applications pratiques où le temps de calcul est une des contraintes principales. Du côté théorique, une contribution majeure de cette thèse est de proposer une définition fonctionnelle des classifieurs analogiques, qui a la particularité d'unifier les approches préexistantes. Cette définition fonctionnelle nous permettra de clairement identifier les liens sous-jacents entre l'approche analogique et l'approche par k plus-proches-voisins, tant au plan algorithmique de haut niveau qu'au plan des propriétés théoriques (taux d'erreur notamment). De plus, nous avons pu identifier un critère qui rend l'application de notre principe d'inférence analogique parfaitement certaine (c'est-à-dire sans erreur), exhibant ainsi les propriétés linéaires du raisonnement par analogie.

Sous la direction du :
Directeur de thèse
Richard, Gilles
Serrurier, Mathieu
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Recherche en Informatique de Toulouse (IRIT), UMR 5505
Mots-clés libres :Apprentissage artificiel - Proportions analogiques - Recommandation
Sujets :Informatique
Déposé le :16 Feb 2018 10:13