LogoLogo

Manfredi, Guido. Learning objects model and context for recognition and localisation

Manfredi, Guido (2015). Learning objects model and context for recognition and localisation.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
5Mb

Résumé en francais

Cette thèse traite des problèmes de modélisation, reconnaissance, localisation et utilisation du contexte pour la manipulation d'objets par un robot. Le processus de modélisation se divise en quatre composantes : le système réel, les données capteurs, les propriétés à reproduire et le modèle. En spécifiant chacune des ces composantes, il est possible de définir un processus de modélisation adapté au problème présent, la manipulation d'objets par un robot. Cette analyse mène à l'adoption des descripteurs de texture locaux pour la modélisation. La modélisation basée sur des descripteurs de texture locaux a été abordé dans de nombreux travaux traitant de structure par le mouvement (SfM) ou de cartographie et localisation simultanée (SLAM). Les méthodes existantes incluent Bundler, Roboearth et 123DCatch. Pourtant, aucune de ces méthodes n'a recueilli le consensus. En effet, l'implémentation d'une approche similaire montre que ces outils sont difficiles d'utilisation même pour des utilisateurs experts et qu'ils produisent des modèles d'une haute complexité. Cette complexité est utile pour fournir un modèle robuste aux variations de point de vue. Il existe deux façons pour un modèle d'être robuste : avec le paradigme des vues multiple ou celui des descripteurs forts. Dans le paradigme des vues multiples, le modèle est construit à partir d'un grand nombre de points de vue de l'objet. Le paradigme des descripteurs forts compte sur des descripteurs résistants aux changements de points de vue. Les expériences réalisées montrent que des descripteurs forts permettent d'utiliser un faible nombre de vues, ce qui résulte en un modèle simple. Ces modèles simples n'incluent pas tout les point de vus existants mais les angles morts peuvent être compensés par le fait que le robot est mobile et peut adopter plusieurs points de vue. En se basant sur des modèles simples, il est possible de définir des méthodes de modélisation basées sur des images seules, qui peuvent être récupérées depuis Internet. A titre d'illustration, à partir d'un nom de produit, il est possible de récupérer des manières totalement automatiques des images depuis des magasins en ligne et de modéliser puis localiser les objets désirés. Même avec une modélisation plus simple, dans des cas réel ou de nombreux objets doivent être pris en compte, il se pose des problèmes de stockage et traitement d'une telle masse de données. Cela se décompose en un problème de complexité, il faut traiter de nombreux modèles rapidement, et un problème d'ambiguïté, des modèles peuvent se ressembler. L'impact de ces deux problèmes peut être réduit en utilisant l'information contextuelle. Le contexte est toute information non issue des l'objet lui même et qui aide a la reconnaissance. Ici deux types de contexte sont abordés : le lieu et les objets environnants. Certains objets se trouvent dans certains endroits particuliers. En connaissant ces liens lieu/objet, il est possible de réduire la liste des objets candidats pouvant apparaître dans un lieu donné. Par ailleurs l'apprentissage du lien lieu/objet peut être fait automatiquement par un robot en modélisant puis explorant un environnement. L'information appris peut alors être fusionnée avec l'information visuelle courante pour améliorer la reconnaissance. Dans les cas des objets environnants, un objet peut souvent apparaître au cotés d'autres objets, par exemple une souris et un clavier. En connaissant la fréquence d'apparition d'un objet avec d'autres objets, il est possible de réduire la liste des candidats lors de la reconnaissance. L'utilisation d'un Réseau de Markov Logique est particulièrement adaptée à la fusion de ce type de données. Cette thèse montre la synergie de la robotique et du contexte pour la modélisation, reconnaissance et localisation d'objets.

Sous la direction du :
Directeur de thèse
Devy, Michel
Sidobre, Daniel
Ecole doctorale:Systèmes
laboratoire/Unité de recherche :Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS) - CNRS
Mots-clés libres :Modélisation - Reconnaissance - Localisation - Contexte - Cooccurrence d'objets - Réseaux logiques de Markov - Structure par le mouvement - SLAM - Descripteurs de texture - Géométrie multivue
Sujets :Informatique
Déposé le :15 Feb 2019 14:40