LogoLogo

Yang, Lin. Functionalized double-walled carbon nanotubes for integrated gas sensors

Yang, Lin (2017). Functionalized double-walled carbon nanotubes for integrated gas sensors.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
9Mb

Résumé en francais

Nous proposons dans ce travail une méthode robuste et bas-coût afin de fabriquer des détecteurs de gaz à base de Nanotubes de Carbone bi-parois (DWCNTs) chimiquement fonctionnalisés. Ces nano-objets (DWCNTs) sont synthétisés par dépôt catalytique en phase vapeur (CCVD), puis purifiés avant d'être oxydés ou bien fonctionnalisés par des terminaisons fluorées ou aminées. Les dispositifs de détection électriques ont été fabriqués par lithographie douce en utilisant un pochoir de PDMS (Poly-DiMethyl Siloxane) et un dépôt en phase liquide à la pipette d'une suspension aqueuse contenant les nanotubes fonctionnalisés, rinçage puis séchage à l'azote sec. Chaque dispositif (1 cm X 2 cm) est équipé d'un jeu de 7 résistors à base de DWCNTs. Chaque résistor peut accueillir des nanotubes fonctionnalisés par une entité chimique différente afin de cibler un gaz spécifique, permettant ainsi une détection multiplexée. En raison de leur faible encombrement et la possibilité de les fabriquer sur tout type de substrat y compris des substrats souples, ces détecteurs pourraient être utilisés pour une large gamme d'applications et notamment les détecteurs de gaz portatifs et intégrés. La résistance électrique des résistors s'avère décroître avec la température suggérant une conduction électrique gouvernée par l'effet tunnel et les fluctuations au sein du tapis désordonné de nanotubes de carbone. Nous avons cependant montré dans ce travail que pour des applications réelles de détection de gaz, une régulation thermique des dispositifs n'est pas nécessaire car les variations de résistance engendrées par l'adsorption de molécules de gaz sont significativement plus grandes que les variations causées par de possibles fluctuations de température. Les dispositifs produits présentent un caractère métallique à température ambiante et pour des applications de détection de gaz nous avons sélectionné des dispositifs présentant des résistances inférieures à 100 kO. Le principe de base de la détection de gaz étant basé sur la mesure directe de la résistance électrique du dispositif, la consommation électrique de ces dispositifs reste faible (<1 µW). La réponse des dispositifs à base de nanotubes de carbone non fonctionnalisés aux analytes testés (éthanol, acétone, ammoniac et vapeur d'eau) est faible. Les nanotubes de carbone fonctionnalisés présentent quant à eux, une réponse modérée à la vapeur d'eau, à l'éthanol et à l'acétone mais montrent une sensibilité excellente à l'ammoniac. En particulier, les nanotubes de carbone oxydés se sont avérés capables de détecter des concentrations sub-ppm d'ammoniac en présence de vapeur d'eau en excès et à température ambiante et ont montré une grande stabilité dans le temps même pour des expositions de gaz répétées. Nous pensons que les groupes chimiques fonctionnels ancrés à la surface des nanotubes de carbone modifient les interactions entre les molécules de gaz et les nanotubes et que le transfert de charges induit provoque les modifications de la conductance électrique du système. Nous avons construit un modèle phénoménologique pour analyser les réponses électriques de nos dispositifs lors de l'exposition d'un gaz. Ce modèle prend en compte une variation exponentielle de la résistance au cours du temps puis un régime d'accroissement linéaire de cette résistance. Nous montrons en particulier que la constante de temps extraite du régime exponentiel est très informative sur la sensibilité et la sélectivité du détecteur de gaz. Nous avons finalement testé nos dispositifs pour des applications représentatives comme par exemple la détection de traces d'ammoniac qui ont pu être aisément réalisées à des concentrations bien inférieures au seuil de détection du nez humain (0.04ppm). En raison de leur grande stabilité, facilité de fabrication (design très simple, technologies de fabrication bas coût, intégration sur substrats souples), robustesse (détection possible en présence de vapeur d'eau et résiliente aux fluctuations thermiques) et en raison de la faible quantité de nanotubes de Carbone nécessaire, nous pensons que nos résultats sont intéressants pour des applications de masse concernant des détecteurs de gaz portables pour l'industrie des technologies de l'information et de la communication.

Sous la direction du :
Directeur de thèse
Vieu, Christophe
Flahaut, Emmanuel
Ecole doctorale:Sciences de la matière (SdM)
laboratoire/Unité de recherche :Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS) - CNRS
Mots-clés libres :Détecteurs de gaz - Nanotubes de Carbone - Fonctionnalisation chimique
Sujets :Sciences de l'ingénieur
Déposé le :08 Jun 2018 16:21