LogoLogo

Lhuillier, Antoine. Bundling : une technique de réduction d'occultation par agrégation visuelle et son application à l'étude de la maladie d'Alzheimer

Lhuillier, Antoine (2017). Bundling : une technique de réduction d'occultation par agrégation visuelle et son application à l'étude de la maladie d'Alzheimer.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
12Mb

Résumé en francais

Le big data est un challenge majeur de la visualisation ; l'augmentation du nombre de données à visualiser augmente la densité et l'occultation des graphes et il devient difficile de distinguer les éléments qui le compose. Pour résoudre ce challenge, plusieurs techniques de visualisation se focalisent sur la simplification visuelle ; parmi elles, l'agrégation visuelle (bundling) permet l'agrégation des liens pour créer des zones de fortes densités au profit d'espaces plus clairsemés faisant ainsi émerger des structures visuelles. Cette thèse s'efforce à faire le trait d'union entre la complexité technique des algorithmes de bundling et les utilisateurs finaux. Dans un premier temps, nous avons formalisé l'espace de design des techniques de bundling afin d'améliorer la compréhension des chercheurs et des utilisateurs. Notre formalisation se fonde sur une taxonomie centrée utilisateur organisant l'ensemble des techniques d'agrégation en fonction des données d'entrée. Ensuite, à partir d'une définition formelle du bundling, nous proposons un modèle générique décrivant l'ensemble des étapes usuelles des algorithmes de bundling et montrons comment les techniques existantes implémentent chaque étape. Enfin, à travers une analyse des tâches, nous exposons des cas d'utilisation avérés. Notre analyse de l'espace des techniques de bundling nous a montré les limites actuelles du bundling quant au traitement de grande quantité de données tant en terme de rapidité de calcul qu'en terme de taille des jeux de données. Ainsi, nous avons résolu ces limites en introduisant une nouvelle technique plus rapide et sans limitation de taille : FFTEB (Fast Fourier Transform Edge Bundling Technique). Notre technique déplace le processus d'agrégation de l'espace pixelaire vers l'espace spectral. Enfin, grâce à un processus de transfert des données, FFTEB résout les problèmes de taille de jeux de données. En dernier lieu, dans le cadre d'une application à la maladie d'Alzheimer, cette thèse démontre l'efficacité des techniques de bundling comme outil d'exploration visuelle. Dans le contexte d'une étude nationale sur la maladie d'Alzheimer, nous avons focalisé notre recherche sur l'analyse de la représentation mentale de l'espace géographique chez les personnes âgées. Nous montrons que l'utilisation du bundling pour comparer les cartes mentales des populations démentes et non-démentes a permis à des neuropsychologues de formuler de nouvelles hypothèses sur l'évolution de la maladie d'Alzheimer. Ces nouvelles hypothèses nous ont permis de montrer l'émergence d'un potentiel marqueur de la maladie près de douze ans avant que les patients ne soient diagnostiqués comme atteints de cette maladie.

Sous la direction du :
Directeur de thèse
Hurter, Christophe
Jouffrais, Christophe
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Ecole Nationale d'Aviation Civile (ENAC)
Mots-clés libres :Bundling - Visualisation - Exploration visuelle - Big data - IHM - Alzheimer - Cartes cognitives - Vieillissement
Sujets :Informatique
Déposé le :03 Jul 2018 09:25