LogoLogo

Gazzino, Clément. Stratégies de maintien à poste pour un satellite géostationnaire à propulsion tout électrique

Gazzino, Clément (2018). Stratégies de maintien à poste pour un satellite géostationnaire à propulsion tout électrique.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
8Mb

Résumé en francais

Pour mener à bien leur mission, les satellites de télécommunications doivent rester à la verticale d'un même point de la Terre, sur une orbite dite géostationnaire, pour laquelle la période de révolution des satellites sur leur orbite est identique à la période de rotation de la Terre sur elle-même. Cependant, à cause des perturbations orbitales, les satellites tendent à s'en éloigner, et il est alors nécessaire de concevoir des stratégies de commande pour les maintenir dans un voisinage de cette position de référence. Du fait de leur grande valeur de poussée, les systèmes à propulsion chimique ont largement été utilisés, mais aujourd'hui les systèmes à propulsion électrique avec leur grande impulsion spécifique sont des alternatives viables pour réduire la masse d'ergols du satellite, et ainsi le coût au lancement, ou allonger la durée de vie du satellite, ce qui permettrait de limiter l'encombrement dans l'espace. Cependant, l'utilisation d'un tel système propulsif induit des contraintes opérationnelles issues en partie du caractère limité de la puissance électrique disponible à bord. Ces contraintes sont difficiles à prendre en compte dans la transcription du problème de maintien à poste en un problème de contrôle optimal à consommation minimale avec contraintes sur l'état et le contrôle. Ce manuscrit propose deux approches pour résoudre ce problème de commande optimale. La première, basée sur le développement et l'exploitation de conditions nécessaires d'optimalité, consiste à découper le problème initial en trois sous-problèmes pour former une méthode de résolution à trois étapes. La première étape permet de résoudre un problème de maintien à poste expurgé des contraintes opérationnelles, tandis que la deuxième, initialisée par le résultat de la première, produit une solution assurant le respect de ces dernières contraintes. La troisième étape permet d'optimiser la valeur des instants d'allumage et d'extinction des propulseurs dans le cadre du formalisme des systèmes à commutation. La seconde approche, dite " directe ", consiste à paramétrer le profil de commande par une fonction binaire et à le discrétiser sur l'horizon temporel de résolution. Les contraintes opérationnelles sont ainsi facilement transcrites en contraintes linéaires en nombres entiers. Après l'intégration numérique de la dynamique, le problème de contrôle optimal se résume à un problème linéaire en nombres entiers. Après la résolution du problème de maintien à poste sur un horizon court d'une semaine, le problème est résolu sur un horizon long d'un an par résolutions successives sur des horizons courts d'une durée de l'ordre de la semaine. Des contraintes de fin d'horizon court doivent alors être ajoutées afin d'assurer la faisabilité de l'enchaînement des problèmes sur l'horizon court constituant le problème sur l'horizon long.

Sous la direction du :
Directeur de thèse
Arzelier, Denis
Louembet, Christophe
Ecole doctorale:Systèmes
laboratoire/Unité de recherche :Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS) - CNRS
Mots-clés libres :Maintien à poste - Satellite GEO - Poussée faible - Contrôle optimal
Sujets :Electricite, électronique, automatique
Déposé le :06 Jul 2018 13:40