LogoLogo

Arantes Gilz, Paulo Ricardo. Embedded and validated control algorithms for the spacecraft rendezvous

Arantes Gilz, Paulo Ricardo (2018). Embedded and validated control algorithms for the spacecraft rendezvous.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
4Mb

Résumé en francais

L'autonomie est l'une des préoccupations majeures lors du développement de missions spatiales que l'objectif soit scientifique (exploration interplanétaire, observations, etc) ou commercial (service en orbite). Pour le rendez-vous spatial, cette autonomie dépend de la capacité embarquée de contrôle du mouvement relatif entre deux véhicules spatiaux. Dans le contexte du service aux satellites (dépannage, remplissage additionnel d'ergols, correction d'orbite, désorbitation en fin de vie, etc), la faisabilité de telles missions est aussi fortement liée à la capacité des algorithmes de guidage et contrôle à prendre en compte l'ensemble des contraintes opérationnelles (par exemple, saturation des propulseurs ou restrictions sur le positionnement relatif entre les véhicules) tout en maximisant la durée de vie du véhicule (minimisation de la consommation d'ergols). La littérature montre que ce problème a été étudié intensément depuis le début des années 2000. Les algorithmes proposés ne sont pas tout à fait satisfaisants. Quelques approches, par exemple, dégradent les contraintes afin de pouvoir fonder l'algorithme de contrôle sur un problème d'optimisation efficace. D'autres méthodes, si elles prennent en compte l'ensemble du problème, se montrent trop lourdes pour être embarquées sur de véritables calculateurs existants dans les vaisseaux spatiaux. Le principal objectif de cette thèse est le développement de nouveaux algorithmes efficaces et validés pour le guidage et le contrôle impulsif des engins spatiaux dans le contexte des phases dites de "hovering" du rendez-vous orbital, i.e. les étapes dans lesquelles un vaisseau secondaire doit maintenir sa position à l'intérieur d'une zone délimitée de l'espace relativement à un autre vaisseau principal. La première contribution présentée dans ce manuscrit utilise une nouvelle formulation mathématique des contraintes d'espace pour le mouvement relatif entre vaisseaux spatiaux pour la conception d'algorithmes de contrôle ayant un traitement calculatoire plus efficace comparativement aux approches traditionnelles. La deuxième et principale contribution est une stratégie de contrôle prédictif qui assure la convergence des trajectoires relatives vers la zone de "hovering", même en présence de perturbations ou de saturation des actionneurs. Un travail spécifique de développement informatique a pu démontrerl'embarquabilité de ces algorithmes de contrôle sur une carte contenant un microprocesseur LEON3 synthétisé sur FPGA certifié pour le vol spatial, reproduisant les performances des dispositifs habituellement utilisés en vol. Finalement, des outils d'approximation rigoureuse de fonctions ont été utilisés pour l'obtention des solutions validées des équations décrivant le mouvement relatif linéarisé, permettant ainsi une propagation certifiée simple des trajectoires relatives via des polynômes et la vérification du respect des contraintes du problème.

Sous la direction du :
Directeur de thèse
Joldes, Mioara
Louembet, Christophe
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS) - CNRS
Mots-clés libres :Rendez-vous orbital - Commande prédictive - Systèmes impulsifs - Calcul embarqué - Algorithmes certifiés - Calcul formel
Sujets :Mathématiques
Déposé le :11 Dec 2018 14:50