LogoLogo

Figueroa Iglesias, Susely. Integro-differential models for evolutionary dynamics of populations in time-heterogeneous environments

Figueroa Iglesias, Susely (2019). Integro-differential models for evolutionary dynamics of populations in time-heterogeneous environments.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
2237Kb

Résumé en francais

Cette thèse porte sur l'étude qualitative de plusieurs équations paraboliques de type Lotka-Volterra issues de la biologie évolutive et de l'écologie, équations qui prennent en compte un taux de croissance périodique en temps et un phénomène de compétition non locale. Dans une première partie nous étudions d'abord la dynamique des populations phénotypiquement structurées sous l'effet des mutations et de la sélection dans des environnements qui varient périodiquement en temps, puis nous étudions l'impact d'un changement climatique sur ces populations, en considérant que les conditions environnementales varient selon une tendance linéaire, mais de manière oscillatoire. Dans les deux problèmes nous commençons par étudier le comportement en temps long des solutions. Ensuite nous utilisons une approche basée sur les équations de Hamilton-Jacobi pour l'étude asymptotique de ces solutions en temps long lorsque l'effet des mutations est petit. Nous prouvons que lorsque l'effet des mutations disparaît, la densité phénotypique de la population se concentre sur un seul trait (qui varie linéairement avec le temps dans le deuxième modèle), tandis que la taille de la population oscille périodiquement. Pour le modèle de changement climatique nous fournissons également un développement asymptotique de la taille moyenne de la population et de la vitesse critique menant à l'extinction de la population, ce qui est lié à la dérivation d'un développement asymptotique de la valeur propre de Floquet en fonction du taux de diffusion. Dans la deuxième partie, nous étudions quelques exemples particuliers de taux de croissance en donnant des solutions explicites et semi-explicites au problème, et nous présentons quelques illustrations numériques pour le modèle périodique. De plus, étant motivés par une expérience biologique, nous comparons deux populations évoluant dans des environnements différents (constants ou périodiques). En outre, nous présentons une comparaison numérique entre les modèles stochastiques et déterministes pour le phénomène de transfert horizontal des gènes. Dans un contexte Hamilton-Jacobi, nous parvenons à reproduire numériquement le sauvetage évolutif d'une petite population que nous observons dans le modèle stochastique.

Sous la direction du :
Directeur de thèse
Mirrahimi, Sepideh
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Mathématiques de Toulouse (IMT), UMR 5219
Mots-clés libres :Equations de réaction-diffusion non locales - Modèles de sélection-mutation - Etude asymptotique et comportement à long terme - Equations de Hamilton-Jacobi - Concentrations de Dirac
Sujets :Mathématiques
Déposé le :16 Jan 2020 09:46