LogoLogo

Iraïn, Malik. Plateforme d'analyse de performances des méthodes de localisation des données dans le cloud basées sur l'apprentissage automatique exploitant des délais de messages

Iraïn, Malik (2019). Plateforme d'analyse de performances des méthodes de localisation des données dans le cloud basées sur l'apprentissage automatique exploitant des délais de messages.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
3933Kb

Résumé en francais

L'utilisation du cloud est une nécessité aujourd'hui, les données produites et utilisées par tous les types d'utilisateurs (individus particuliers, entreprises, structures administratives) ayant atteint une masse trop importante pour être stockées autrement. L'utilisation du cloud nécessite la signature, explicite ou non, d'un contrat avec un fournisseur de service de stockage. Ce contrat mentionne les niveaux de qualité de service requis selon différents critères. Parmi ces critères se trouve la localisation des données. Cependant, ce critère n'est pas facilement vérifiable par un utilisateur. C'est pour cela que la recherche dans le domaine de la vérification de localisation de données a suscité plusieurs travaux depuis quelques années, mais les solutions proposées restent encore perfectibles. Le travail proposé dans le cadre de cette thèse consiste à étudier les solutions de vérification de localisation par les clients, c'est-à-dire les solutions estimant la localisation des données et fonctionnant à l'aide de points de repère. L'approche à investiguer peut être résumée comme suit : en exploitant les délais de communication et en utilisant des modèles de temps de traversée du réseau, estimer, avec une certaine erreur de distance, la localisation des données. Pour cela, le travail réalisé est le suivant : • Une revue de l'état de l'art des différentes méthodes permettant aux utilisateurs de connaitre la localisation de leurs données. • La conception d'une notation unifiée pour les méthodes étudiées dans la revue de l'état de l'art, avec une proposition de deux scores pour évaluer et comparer les méthodes. • La mise en place d'une plateforme de collecte de mesures réseau. Grâce à cette plateforme, deux jeux de données ont été récoltés, un au niveau national et l'autre un niveau mondial. Ces deux jeux de données permettent d'évaluer les différentes méthodes présentées dans la revue de l'état de l'art. • La mise en place d'une architecture d'évaluation à partir des deux jeux de données et des scores définis, afin d'établir la qualité des méthodes (taux de succès) et la qualité des résultats (précision du résultat) grâce aux scores proposés.

Sous la direction du :
Directeur de thèse
Mammeri, Zoubir
Jorda, Jacques
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Recherche en Informatique de Toulouse (IRIT), UMR 5505
Mots-clés libres :Cloud - Qualité de service - Localisation des données - Apprentissage automatique - Analyse de performance
Sujets :Informatique
Déposé le :26 Feb 2020 15:03