LogoLogo

Desormeaux, Kevin. Temporal models of motions and forces for Human-Robot Interactive manipulation

Desormeaux, Kevin (2019). Temporal models of motions and forces for Human-Robot Interactive manipulation.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
12Mb

Résumé en francais

L'intérêt pour la robotique a débuté dans les années 70 et depuis les robots n'ont cessé de remplacer les humains dans l'industrie. L'automatisation à outrance n'apporte cependant pas que des avantages, car elle nécessite des environnements parfaitement contrôlés et la reprogrammation d'une tâche est longue et fastidieuse. Le besoin accru d'adaptabilité et de ré-utilisabilité des systèmes d'assemblage force la robotique à se révolutionner en amenant notamment l'homme et le robot à interagir. Ce nouveau type de collaboration permet de combiner les forces respectives des humains et des robots. Cependant l'homme ne pourra être inclus en tant qu'agent actif dans ces nouveaux espaces de travail collaboratifs que si l'on dispose de robots sûrs, intuitifs et facilement reprogrammables. C'est à la lumière de ce constat qu'on peut deviner le rôle crucial de la génération de mouvement pour les robots de demain. Pour que les humains et les robots puissent collaborer, ces derniers doivent générer des mouvements sûrs afin de garantir la sécurité de l'homme tant physique que psychologique. Les trajectoires sont un excellent modèle pour la génération de mouvements adaptés aux robots collaboratifs, car elles offrent une description simple et précise de l'évolution du mouvement. Les trajectoires dîtes souples sont bien connues pour générer des mouvements sûrs et confortables pour l'homme. Dans cette thèse nous proposons un algorithme de génération de trajectoires temps-réel basé sur des séquences de segments de fonctions polynomiales de degré trois pour construire des trajectoires souples. Ces trajectoires sont construites à partir de conditions initiales et finales arbitraires, une condition nécessaire pour que les robots soient capables de réagir instantanément à des événements imprévus. L'approche basée sur un modèle à jerk-contraint offre des solutions orientées performance: les trajectoires sont optimales en temps sous contraintes de sécurité. Ces contraintes de sécurité sont des contraintes cinématiques qui dépendent de la tâche et du contexte et doivent être spécifiées. Pour guider le choix de ces contraintes, nous avons étudié le rôle de la cinématique dans la définition des propriétés ergonomiques du mouvement. L'algorithme a également été étendu pour accepter des configurations initiales non admissibles permettant la génération de trajectoires sous contraintes cinématiques non constantes. Cette extension est essentielle dans le contexte des interactions physiques homme-robot, car le robot doit être capable d'adapter son comportement en temps-réel pour préserver la sécurité physique et psychologique des humains. Cependant considérer le problème de la génération de trajectoires ne suffit pas si on ne considère pas le contrôle. Le passage d'une trajectoire à une autre est un problème difficile pour la plupart des systèmes robotiques dans des contextes applicatifs réels. Pour cela, nous proposons une stratégie de contrôle réactif de ces trajectoires ainsi qu'une architecture construite autour de l'utilisation des trajectoires.

Sous la direction du :
Directeur de thèse
Sidobre, Daniel
Ecole doctorale:Systèmes
laboratoire/Unité de recherche :Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS) - CNRS
Mots-clés libres :Génération de trajectoires en temps-réel - Interaction homme-robot - Contrôle réactif de trajectoires - Trajectoires souples - Ergonomie du mouvement
Sujets :Informatique
Déposé le :25 Jun 2020 15:52