LogoLogo

Jeveme Panta, Franck. Modélisation des métadonnées multi sources et hétérogènes pour le filtrage négatif et l'interrogation intelligente de grands volumes de données : application à la vidéosurveillance

Jeveme Panta, Franck (2020). Modélisation des métadonnées multi sources et hétérogènes pour le filtrage négatif et l'interrogation intelligente de grands volumes de données : application à la vidéosurveillance.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
2800Kb

Résumé en francais

En raison du déploiement massif et progressif des systèmes de vidéosurveillance dans les grandes métropoles, l'analyse a posteriori des vidéos issues de ces systèmes est confrontée à de nombreux problèmes parmi lesquels: (i) l'interopérabilité, due aux différents formats de données (vidéos) et aux spécifications des caméras propres à chaque système ; (ii) le grand temps d'analyse lié à l'énorme quantité de données et métadonnées générées ; et (iii) la difficulté à interpréter les vidéos qui sont parfois à caractère incomplet. Face à ces problèmes, la nécessité de proposer un format commun d'échange des données et métadonnées de vidéosurveillance, de rendre le filtrage et l'interrogation des contenus vidéo plus efficaces, et de faciliter l'interprétation des contenus grâce aux informations exogènes (contextuelles) est une préoccupation incontournable. De ce fait, cette thèse se focalise sur la modélisation des métadonnées multi sources et hétérogènes afin de proposer un filtrage négatif et une interrogation intelligente des données, applicables aux systèmes de vidéosurveillance en particulier et adaptables aux systèmes traitant de grands volumes de données en général. L'objectif dans le cadre applicatif de cette thèse est de fournir aux opérateurs humains de vidéosurveillance des outils pour les aider à réduire le grand volume de vidéo à traiter ou à visionner et implicitement le temps de recherche. Nous proposons donc dans un premier temps une méthode de filtrage dit "négatif", qui permet d'éliminer parmi la masse de vidéos disponibles celles dont on sait au préalable en se basant sur un ensemble de critères, que le traitement n'aboutira à aucun résultat. Les critères utilisés pour l'approche de filtrage négatif proposé sont basés sur une modélisation des métadonnées décrivant la qualité et l'utilisabilité/utilité des vidéos. Ensuite, nous proposons un processus d'enrichissement contextuel basé sur les métadonnées issues du contexte, et permettant une interrogation intelligente des vidéos. Le processus d'enrichissement contextuel proposé est soutenu par un modèle de métadonnées extensible qui intègre des informations contextuelles de sources variées, et un mécanisme de requêtage multiniveaux avec une capacité de raisonnement spatio-temporel robuste aux requêtes floues. Enfin, nous proposons une modélisation générique des métadonnées de vidéosurveillance intégrant les métadonnées décrivant le mouvement et le champ de vue des caméras, les métadonnées issues des algorithmes d'analyse des contenus, et les métadonnées issues des informations contextuelles, afin de compléter le dictionnaire des métadonnées de la norme ISO 22311/IEC 79 qui vise à fournir un format commun d'export des données extraites des systèmes de vidéosurveillance. Les expérimentations menées à partir du framework développé dans cette thèse ont permis de démontrer la faisabilité de notre approche dans un cas réel et de valider nos propositions.

Sous la direction du :
Directeur de thèse
Sèdes, Florence
Péninou, André
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Recherche en Informatique de Toulouse (IRIT), UMR 5505
Mots-clés libres :Métadonnées - Informations contextuelles - Données ouvertes - Interopérabilité - Systèmes de vidéosurveillance
Sujets :Informatique
Déposé le :17 Dec 2020 08:56