LogoLogo

Qodseya, Mahmoud. Managing heterogeneous cues in social contexts. A holistic approach for social interactions analysis

Qodseya, Mahmoud (2020). Managing heterogeneous cues in social contexts. A holistic approach for social interactions analysis.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
4Mb

Résumé en francais

Une interaction sociale désigne toute action réciproque entre deux ou plusieurs individus, au cours de laquelle des informations sont partagées sans "médiation technologique". Cette interaction, importante dans la socialisation de l'individu et les compétences qu'il acquiert au cours de sa vie, constitue un objet d'étude pour différentes disciplines (sociologie, psychologie, médecine, etc.). Dans le contexte de tests et d'études observationnelles, de multiples mécanismes sont utilisés pour étudier ces interactions tels que les questionnaires, l'observation directe des événements et leur analyse par des opérateurs humains, ou l'observation et l'analyse à posteriori des événements enregistrés par des spécialistes (psychologues, sociologues, médecins, etc.). Cependant, de tels mécanismes sont coûteux en termes de temps de traitement, ils nécessitent un niveau élevé d'attention pour analyser simultanément plusieurs descripteurs, ils sont dépendants de l'opérateur (subjectivité de l'analyse) et ne peuvent viser qu'une facette de l'interaction. Pour faire face aux problèmes susmentionnés, il peut donc s'avérer utile d'automatiser le processus d'analyse de l'interaction sociale. Il s'agit donc de combler le fossé entre les processus d'analyse des interactions sociales basés sur l'homme et ceux basés sur la machine. Nous proposons donc une approche holistique qui intègre des signaux hétérogènes multimodaux et des informations contextuelles (données "exogènes" complémentaires) de manière dynamique et optionnelle en fonction de leur disponibilité ou non. Une telle approche permet l'analyse de plusieurs "signaux" en parallèle (où les humains ne peuvent se concentrer que sur un seul). Cette analyse peut être encore enrichie à partir de données liées au contexte de la scène (lieu, date, type de musique, description de l'événement, etc.) ou liées aux individus (nom, âge, sexe, données extraites de leurs réseaux sociaux, etc.) Les informations contextuelles enrichissent la modélisation des métadonnées extraites et leur donnent une dimension plus "sémantique". La gestion de cette hétérogénéité est une étape essentielle pour la mise en œuvre d'une approche holistique. L'automatisation de la capture et de l'observation " in vivo " sans scénarios prédéfinis lève des verrous liés à i) la protection de la vie privée et à la sécurité ; ii) l'hétérogénéité des données ; et iii) leur volume. Par conséquent, dans le cadre de l'approche holistique, nous proposons (1) un modèle de données complet préservant la vie privée qui garantit le découplage entre les méthodes d'extraction des métadonnées et d'analyse des interactions sociales ; (2) une méthode géométrique non intrusive de détection par contact visuel ; et (3) un modèle profond de classification des repas français pour extraire les informations du contenu vidéo. L'approche proposée gère des signaux hétérogènes provenant de différentes modalités en tant que sources multicouches (signaux visuels, signaux vocaux, informations contextuelles) à différentes échelles de temps et différentes combinaisons entre les couches (représentation des signaux sous forme de séries temporelles). L'approche a été conçue pour fonctionner sans dispositifs intrusifs, afin d'assurer la capture de comportements réels et de réaliser l'observation naturaliste. Nous avons déployé l'approche proposée sur la plateforme OVALIE qui vise à étudier les comportements alimentaires dans différents contextes de la vie réelle et qui est située à l'Université Toulouse-Jean Jaurès, en France.

Sous la direction du :
Directeur de thèse
Sèdes, Florence
Poulain, Jean-Pierre
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Recherche en Informatique de Toulouse (IRIT), UMR 5505
Mots-clés libres :Études observationnelles - Analyse des interactions sociales - Descripteurs sociaux hétérogènes - Analyse du comportement alimentaire
Sujets :Informatique
Déposé le :16 Dec 2020 15:21