LogoLogo

Hassan, Ali. Traitement thermochimique et caractérisation spectro-électrochimique des électrodes en feutre de carbone, utilisées dans des cellules pilote d'une batterie à circulation tout vanadium

Hassan, Ali (2020). Traitement thermochimique et caractérisation spectro-électrochimique des électrodes en feutre de carbone, utilisées dans des cellules pilote d'une batterie à circulation tout vanadium.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
4Mb

Résumé en francais

La demande croissante d'énergie au niveau mondial fait que les énergies obtenues de ressources renouvelables connaissent un essor important, notamment dans la production globale d'électricité propre (ne générant pas des gaz à effet de serre, tels les combustibles fossiles enrichis en carbone). La nature 'intermittente' de ces ressources renouvelables d'énergie implique l'utilisation des dispositifs de stockage de grande échelle, efficaces et économiquement compétitifs. Les batteries à circulation, tout vanadium (VRFB) sont des dispositifs de stockage prometteurs pour les applications stationnaires. En effet, l'absence de contamination irréversible de l'électrolyte est l'avantage principal de cette batterie dont le nombre de cycles 'charge-décharge' est théoriquement illimité. Le graphite et le feutre de graphite sont des matériaux d'électrodes à faible coût utilisés par les VRFB ; cependant le système V(V)/V(IV) (électrode positive) est cinétiquement lent sur ce matériau et introduit une surtension diminuant la tension délivrée par la batterie. Différentes méthodes (chimiques, thermiques, électrochimiques,...) ont été conçues lors de cette thèse pour activer la surface du graphite commercial, càd. améliorer son activité électrocatalytique vis-à-vis de la réaction (VO2 + ⇌VO2+) ayant lieu à l'électrode positive. Cette amélioration a été caractérisée par voltammétrie linéaire (état quasi-stationnaire) et cyclique (état transitoire). En outre, la morphologie de l'électrode et son état de surface ont été analysés par infrarouge à transformée de Fourier (FTIR) et par microscopie électronique à balayage (SEM). De plus, l'interaction électrode-électrolyte a été quantifiée par des mesures d'angle de contact qui ont permis de déterminer l'énergie libre de surface. L'activation de l'électrode a généré différents groupes oxygénés (C-OH, C = O, COOH) sur sa surface, laquelle a par ailleurs augmenté du fait d'une certaine érosion et donc la création d'une rugosité ; ceci s'est traduit par : i) l'augmentation de 35% de l'amplitude du courant du pic obtenu par voltamétrie cyclique (pour le système VO2+/VO2+) et ii) le rapprochement des pics anodique et cathodique (ΔEpics= 300 mV). Les calculs de la théorie fonctionnelle de la densité (DFT) ont été effectués pour évaluer le rôle de ces groupes oxygénés sur la réactivité du système redox VO2+/VO2+(à l'électrode positive). DFT montre que ces groupes d'oxygéne augmente l'hybridation sp3 dans la structure du graphite, ce qui facilite les réactions redox. La constante de transfert électronique hétérogène intrinsèque (k °) de ce même système redox a augmentée de 2,6 et 6,1 fois pour l'oxydation (V(IV)→V(V)) et la réduction (V(V)→V(IV)), respectivement. Par ailleurs l'augmentation constatée de l'énergie libre de surface du feutre de graphite (de 13,9 mN / m à 53,29 mN / m) traduit l'amélioration, par le traitement, des interactions électrode-électrolyte. La performance de l'électrode a été évaluée dans une demi-cellule classique par des cycles de charge/décharge et les résultats ont montré que la tension aux bornes durant la charge diminue (de 1,18 V à 1,04 V) alors que celle obtenue en décharge augmente (de 0,42 V à 0,75 V), après l'activation de GF. Des cycles charge/décharge ont également été réalisés avec un réacteur électrochimique filtre presse (pile et électrolyseur pour VRFB), ayant une surface géométrique de 100 cm2 de GF dans chaque compartiment électrolytique. Grace au traitement effectué, le rendement énergétique et la tension aux bornes se sont améliorés de 20% et 13% respectivement, dans le cas d'une électrolyse en mode galvanostatique (50 A.m2), ce qui montre que les méthodes d'activation proposées sont efficaces et en outre faciles à mettre en œuvre.

Sous la direction du :
Directeur de thèse
Tzedakis, Théo
Ecole doctorale:Mécanique, énergétique, génie civil, procédés (MEGeP)
laboratoire/Unité de recherche :Laboratoire de Génie Chimique (LGC), UMR 5503
Mots-clés libres :Batteries à circulation - Réacteur électrochimique à l'échelle pilote - Cycles charge/décharge - Caractérisation spectro-électrochimique
Sujets :Sciences de l'ingénieur
Déposé le :12 Feb 2021 10:01