LogoLogo

Abdelghani, Wafa. A multi-dimensional trust-model for dynamic, scalable and resources-efficient trust-management in social internet of things

Abdelghani, Wafa (2020). A multi-dimensional trust-model for dynamic, scalable and resources-efficient trust-management in social internet of things.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
2152Kb

Résumé en francais

L'internet des Objets (IoT) est un paradigme qui a rendu les objets du quotidien, intelligents en leur offrant la possibilité de se connecter à Internet, de communiquer et d'interagir. L'intégration de la composante sociale dans l'IoT a donné naissance à l'Internet des Objets Social (SIoT), qui a permis de surmonter diverse problématiques telles que l'interopérabilité et la découverte de ressources. Dans ce type d'environnement, les participants rivalisent afin d'offrir une variété de services attrayants. Certains d'entre eux ont recours à des comportements malveillants afin de propager des services de mauvaise qualité. Ils lancent des attaques, dites de confiance, et brisent les fonctionnalités de base du système. Plusieurs travaux de la littérature ont abordé ce problème et ont proposé différents modèles de confiance. La majorité d'entre eux ont tenté de réappliquer des modèles de confiance conçus pour les réseaux sociaux ou les réseaux pair-à-pair. Malgré les similitudes entre ces types de réseaux, les réseaux SIoT présentent des particularités spécifiques. Dans les SIoT, nous avons différents types d'entités qui collaborent, à savoir des humains, des dispositifs et des services. Les dispositifs peuvent présenter des capacités de calcul et de stockage très limitées et leur nombre peut atteindre des millions. Le réseau qui en résulte est complexe et très dynamique et les répercussions des attaques de confiance peuvent être plus importantes. Nous proposons un nouveau modèle de confiance, multidimensionnel, dynamique et scalable, spécifiquement conçu pour les environnements SIoT. Nous proposons, en premier lieu, des facteurs permettant de décrire le comportement des trois types de nœuds impliqués dans les réseaux SIoT et de quantifier le degré de confiance selon les trois dimensions de confiance résultantes. Nous proposons, ensuite, une méthode d'agrégation basée sur l'apprentissage automatique et l'apprentissage profond qui permet d'une part d'agréger les facteurs proposés pour obtenir un score de confiance permettant de classer les nœuds, mais aussi de détecter les types d'attaques de confiance et de les contrer. Nous proposons, ensuite, une méthode de propagation hybride qui permet de diffuser les valeurs de confiance dans le réseau, tout en remédiant aux inconvénients des méthodes centralisée et distribuée. Cette méthode permet d'une part d'assurer la scalabilité et le dynamisme et d'autre part, de minimiser la consommation des ressources. Les expérimentations appliquées sur des de données synthétiques nous ont permis de valider le modèle proposé.

Sous la direction du :
Directeur de thèse
Sèdes, Florence
Amous, Ikram
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Recherche en Informatique de Toulouse (IRIT), UMR 5505
Mots-clés libres :Gestion de la confiance - Internet des objets - Réseaux sociaux - Internet des objets social - Attaque de confiance
Sujets :Informatique
Déposé le :09 Apr 2021 13:21