LogoLogo

Alhelou, Joe. Etude mathématique et numérique d'un système de Gross-Clark-Schrödinger

Alhelou, Joe (2021). Etude mathématique et numérique d'un système de Gross-Clark-Schrödinger.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
2534Kb

Résumé en francais

Cette thèse porte sur l'étude d'un système de Gross-Clark-Schrödinger qui modélise le mouvement d'une impureté dans un condensat de Bose. Nous avons d'abord montré que le problème de Cauchy pour ce système est globalement bien posé dans l'espace d'énergie associé. L'approche utilisée est assez classique et est basée sur des estimations de type Strichartz ainsi que sur l'utilisation d'un théorème de point fixe. Dans un second temps nous nous sommes intéressés aux ondes progressives de ce système. Ces solutions spéciales ont été étudiées dès 1974 par des physiciens à l'aide des développements asymptotiques formels et de quelques simulations numériques. En dimension un d'espace l'existence de ces solutions et quelques propriétés ont été établies rigoureusement en 2006. Malgré plusieurs tentatives, il n'existe dans la littérature aucune preuve rigoureuse de l'existence des ondes progressives en dimension supérieure ou égale à deux. Nous avons utilisé plusieurs approches pour montrer l'existence, basées sur des idées et des outils récemment développés en Calcul des Variations. Une d'elles consiste à minimiser l'énergie associée au système sous deux contraintes, à masse constante et à moment constant. Nous avons montré que les ondes progressives minimisantes existent pour tout couple (moment, masse) qui vérifie une condition de stricte sous-additivité de l'énergie minimale comme fonction de deux variables. En parallèle, nous avons effectué des simulations numériques qui ont bien mis en évidence les ondes progressives dans les cas qui correspondent aux applications physiques, nous avons obtenu leurs profils et nous avons calculé leurs niveaux d'énergie. Nous avons étudié également d'autres types de solutions spéciales, notamment les états fondamentaux de moment nul et les solutions de type bulle-vortex.

Sous la direction du :
Directeur de thèse
Maris, Mihai
Chiron, David
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Mathématiques de Toulouse (IMT), UMR 5219
Mots-clés libres :Système de Gross-Clark - Minimisation sous contraintes - Ondes progressives - Minimiseurs - Ground-state - Vortex
Sujets :Mathématiques
Déposé le :16 Feb 2022 15:07